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Abstract

The paper presents an analysis of the interaction between the geothermal flux and the water or air- deep drainage
networks. The problem of geothermal power intercepted by deep structures and, in general, the temperature field
calculations, is converted to classical thermo-engineering problems in terms of shape factors. It is shown that the fluid flow
in a conduit perturbs the whole deep rock temperature field until the geothermal flux of a large area is focalised onto the
conduit. It is shown that either small water masses flowing into a mountain are able to perturb the rock temperature up to
the surface, on sizes that do not depend on water mass dimension, but on its depth, and then on enormous volumes. The
introduction of the “ geothermal cross section” of an underground drainage structure allows us to improve the classical
formula of minimum provenance depth of geothermal water. Enlarging factors are applied to the classical estimation in
dependence of the ratio between the actual average discharge and the critical discharge Q., which depends on the conduit
geothermal cross section. The geothermal “ umbra cones’ created in the overlying rock by deep underground structures are
described.

It is shown that the gecthermal flux can play a significant role in the underground drainage phenomenol ogy.

Keywords: geothermal flux, heat transfer in karst massifs

1. The geothermal flux and the energy

The flux is some 60 kW per square kilometre,
contents of rocks

which corresponds to a total release of 3x10"
W on the whole planet. For comparison the
energy flux received from the Sun is 1.7x10"
W, therefore the geothermal flux is around 5000
times smaller than the main energy source for
have temperatures that increase with depth. The Earth. It cannot play a role in the free
reason is that the internal part of Earth is hot atmosphere phenomenology, but we are going
and the surface cold; there are then two “heat to see that in the case of underground
sources” (but in this work I have adopted the
suggestion of Bohren (Bohren, 1998), avoiding
use of the word “heat”), and the thermal energy
flows between them with the rules given by the
usual conduction equations.

An introduction to the geothermal energy flux

It is widely known that the rocks below us

atmospheres it can and it does.

At first, this appears not to be true in the case
of cave atmospheres, that are really quite cold
(essentially at the yearly average external
temperature, -from hereafter T,. ; Badino,

Table 1, adapted from (Lee, 1966) gives
typical values, widely variable, of geothermal
flux, estimated by measures of deep
underground temperature gradients.

The world average (Verhoogen, 1956) is
Fy=0.06 Wm™

2004) while the atmosphere of mines can be
very hot (Badino and Forti, 2005). Actually the
first aim of this work was to show that the
geothermal flux could not play any role in the
deep karst microclimates and genesis, because it
is shielded by deep drainage conduits: This is
exactly the contrary of what we are going to
show...
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TABLE 1

Typical values of geothermal flux

Regions Mean geothermal flux Fy Number of measures
[mW m™] or [kW km™]

Continents
Africa 36-61 15
America 25-150 85
Australia 35-160 65
Asia 22-150 60
Europe 26-140 60
Oceans
Atlantic 3.4-250 250
Indian 5.9-220 250
Pacific 2.9-340 600
Arctic 33-62 20
Geothermal regions
Larderello (I) 450
Oora Kei Korake (NZ) 4200
Matsukawa (J) 630

Mines, caves and tunnels

The first point to discuss is the difference
between the temperature of artificial and natural
cavities in order to clarify the common
confusion between “thermal flux” and
“temperature”.

It is useful to compare two Underground
Neutrino  Observatories, in Mont Blanc
(between France and Italy) and in Gran Sasso
(in central Italy), which are assembled in halls
in motorway tunnels. The depth of the first,
dismissed in 2001, was some 1800 m below the
surface, at an altitude of 1300 m asl, whilst the
depth of the second is around 1050 m at an
altitude of 1000 m asl. Their temperatures are
nevertheless completely different, in the first it
is around 32 °C, in the second at 6 °C, the two
unsuitable for working. Therefore it is necessary
to act in the opposite sense, in the first to cool,
in the second to warm the experimental halls.

The reason for the two different temperatures
is the different rock permeability.

The Mont Blanc rock is mainly granite, the
waters met by the tunnel were essentially fossil
waters, the meteoric water circulation being
quite epidermal (up to depth of 100-200 m
below the surface), with some exceptions
localised along large major rock discontinuities.

The Gran Sasso rock is essentially limestone,
and drillings have shown a cave layer 550 m
above the tunnel altitude, and a general water
table extended up to that level. The infiltration
waters at the surface are essentially at T,y., and
cross the whole mountain in nearly adiabatic
conditions, which means that they are only very
slowly heated along the fall. Therefore in the Mt
Blanc’s depth there are essentially “mine”
waters in thermal equilibrium with hot, deep
rocks, whilst the deep Gran Sasso waters are
essentially meteoric waters, in equilibrium with
the atmosphere.

It is useful to discuss a little more the internal
water heating in karst. The reason for water
temperature increase during underground fall is
the gravitational energy which is converted in
thermal (a process that gives a water adiabatic
lapse rate —2.34 °C km™) and, in the case of
flowing in vadose conditions, also to thermal
exchanges with moist air, always characterised
by a different adiabatic lapse rate, around -5 °C
km™. The actual caves’ lapse rates are between
these two extremes (Badino, 2000; Luetscher
and Jeannin, 2004), a fact that has huge
consequences on the caves energetic balances,
which nevertheless are outside this work aim;
we return briefly to it in the next chapter, but a
discussion can be found in (Badino, 2005). We
concentrate here on the fact that the infiltrations
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create a thermal connection between the
atmosphere and the deep karst.

In short the thermal contact between deep
waters and atmosphere in the Mont Blanc case
1s due to the recent tunnel, in the Gran Sasso to
the natural ancient conduits that have permitted
a deep water flow that has been able to shield
the geothermal flux from below and to cool the
whole mountain above the water table.

More in general we can compare the
temperature in the bulk of large mountains
looking at the temperatures encountered during
the tunnels construction. The world’s deepest
tunnels are essentially in the Alps and it is
possible to discuss their internal temperatures.
The figures, adapted from (Szechy, 1973) show
the rock profile above the tunnels and the
corresponding local temperature.

The first figure (Fig. 1) shows the situation of
the St. Gotthard tunnel, in Switzerland, mainly
in granite and gneiss. It is possible to see that
the temperature dependence with depth is quite
regular.

Next figure (Fig. 2) shows the situation in the
Simplon tunnel (between Italy and Switzerland),
a geological structure in gneiss and, roughly in
the Italian part, limestones. It shows low
temperature anomalies in the sedimentary part
around PK 15 (Luetscher and Jeannin, 2004).

The Mt Blanc situation is quite different (Fig.
3). Its rock is mainly protogine, but there is an
important fault that allows very deep glacial
water circulation, which has lowered the rock
temperature near PK 8, where extreme
excavation problems where encountered
(Guichonnet, 1967). The general behaviour is
regular, but the whole mountain has been cooled
a little by the fault.

The next figure (Fig. 4) shows a completely
different situation, the Gran Sasso (Catalano,
1993). Not only the temperature does not
increase with depth, but also it shows a
tendency to decrease with it, because as deep as
it is, as colder are inflowing waters. We have
seen above that they meet a very small warming
crossing the mountain (Badino, 1995).

Other more complex phenomena can occur in
determining the rock temperature. For example
Szechy cites the case of the Great Appennine
tunnel (Italy), mainly in limestone and clay,
where a local temperature of 60 °C, 500 metres
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Fig. 1. Depth profile and rock temperatures in the St.
Gotthard tunnel.

simplon

dapth [m]

g 2

=1 [=1

/"

& E 8
temperature [*C]

Fig. 2. Depth profile and rock temperatures in the
Simplon tunnel.
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Mont Blanc tunnel.
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below the surface, has been encountered. The
Author says that “discrepancies are due to
intensive methane infiltration through the
Eocene clay shale”, which looks quite strange.
Nevertheless it is quite common to meet high
temperatures connected with local thermal water
infiltrations, often connected with hyperkarstic
phenomena (Badino and Forti, 2005). Here we
deal only with a “standard” situation to analyse
the geothermal impact on our usual karst.

Convective mountains

The graphics (Fig. 5) show in short the above
discussed data (temperature vs. depth) where
each type of data point indicator describes a
different tunnel. It is possible to see two
completely different behaviours, the ‘“hot”
mountains without internal water fluxes, with
positive temperature gradient, and the “karstic”
mountains with slowly negative or zero

gradients.
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Fig. 5. Rock temperature versus depth in the large
alpine tunnels.

In fact these mountains are in thermal
contact, and in equilibrium, with the local
climate, that they follow with a delay that
depends on the mountain depth (Badino, 2004).

This thermal contact surface-underground
due to water vein, is the base for the traditional
and fundamental “remote sensing” during tunnel

excavations. Continuous rock temperature
measurements are performed during work
(Guichonnet, 1967); a regular temperature

increase with the surface distance is a signal of
compact rock. Occasional water veins are in
thermal equilibrium with geothermal flux,
which is possible only if these water reservoirs
are relatively small and without a hydro-
geological connection on long ranges, and then

cannot be extremely dangerous. Otherwise, if
during excavation appears a tendency to a
temperature reduction, it is a sure signal of an
approaching water stream in direct contact with
the surface, that at these depths has obviously
enormous pressure, which is able to create
extremely dangerous situations, also because it
is surely associated to dramatic rock
discontinuities. This is the reason why a lot of
work is made in the field of rock temperature
estimations in deep tunnels (Koenigsberg, 1906;
Goy et al., 1996; Badino, unpubl. 2005).

Underground  high  temperatures  are
connected with good thermal insulations, which
means that a tunnel, or a mine, can be excavated
across rocks that are very hot (high temperature)
because, 1) they have almost no contact with the
surface and 1ii) they have then acquired
equilibrium with the geothermal flux. Then the
relative rock insulation has allowed to a so
small thermal flux to heat up to high
temperatures enormous quantities of matter.

As we have seen above, it is possible to
consider mountains with caves as good thermal
conductors and then in general (let us forget for
a while the geothermalism) they are in thermal
equilibriumwith the external atmosphere.

As larger are the caves, as smaller it is the
impedance for water crossing the whole
mountain, then deep water circulation is
possible and the whole structure is crossed,
which is a big difference from a mountain
without caves where only water circulation is
quite epidermal.

Another consequence to be pointed out is that
if the mountain is highly permeable to water
fluxes the thermal energy transfers inside it are
absolutely dominated by fluid motion, then the
pure conductive terms into the rock (“heat”
diffusion) become negligible.

It is possible to add that low-impedance water
(or air) transfers inside a mountain can be
considered a special case of thermal convective
movements, and then the karstic mountains are
examples of convective thermal contact with the
atmosphere, whilst the impermeable rocks have
only a conductive contact with it, with a very
poor efficiency.

The hot mountains energy contents

Let us estimate the energy contents of a hot
rock prism, with a surface A and an altitude of
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H. Its temperature at the beginning is T¢=T,y.,
local average temperature.

The geothermal flux will heat the rock until
the temperature gradient in it becomes able to
evacuate the geothermal power on the surface.
This equilibrium condition (“stationarity”, i.e.
no time dependence) is obtained when the
gradient is

oT
th = KRE

Where we have used partial derivative
because in general the temperature is function
also of time. This is exactly the condition that
allows the measure of geothermal flux from
temperature gradient data, assuming a steady-
state condition.

In this case we can assume a rock thermal
conductivity Kg=2.5 Wm" K, typical for
granite, whilst the limestone conductivity is
some 10% less. Then the temperature gradient
at the equilibrium is

F
I _Ta 006 o4k m™
0z Ky, 25

Which is 24 °C per kilometre. It is easy to
calculate the energy necessary to heat at this
constant temperature gradient a rock prism of
surface A from depth Z up to the surface; its
total available energy is

2
Q= | “ACpeATdz= ACR,OR%Z7
R

Where Cr is the rock specific thermal
capacity (800 J kg'K™) and pg its density
(roughly 2600 kg m™). For example, assuming
Z=1 km, with typical values the total energy
contents per kilometre square of surface is

Fo 22
= AC pr—2 ==
Q RPR K. 2

10002

=10° x 800 x 2600 x 0.024 x =2.5x10"]J

For comparison, a 20 kTon atomic bomb
yields 10" J.

It is important to note that this energy, that a
power plant of 1 GW produces in two years, has
been released to our prism rock by the small
geothermal heater, only 60 kW. It is a small

power, but it has worked from a very long time,
the rock is a very efficient thermal insulator and
the final result is an efficient energy storage.

Rock heating time

To estimate correctly the time needed for
heating, it is necessary to take into account that
the rock prism is in contact with others all
around; the calculation would have to include
these in the estimation, reconstructing the whole
temperature field and its dependence on time.
The problem is complex but we can do a crude
estimation of the prism heating time scale
considering it as thermally isolated from its
surroundings (which is equivalent to assume a
flat surface and uniform, uni-dimensional
heating), then

72\ 1
At“eat:Ag :(ACRP RK_QITJAF N
gt R gt
_Cepr Z°
K. 2

The last term can be rewritten in terms of
thermal diffusivity coefficient defined as

K R
CrPor

aR:

In the case of rock

a, ~1.2x10°m’s™

And then
Z2
Alyesy = 2o,

Typical width of limestone mountains are
around 1000 m, then the heating time scale is
around 10* years, not so much for geological
time scale, but longer than the typical global
climate fluctuation (Badino, 2004).

Penetration lengths of temperature fluctuations

Let us recall the classical thermal fields
solution of a homogeneous thermal conductor to
a sinusoidal and to a sudden (step) temperature
change.

In the first case a thermal wave propagates
inside, fading exponentially (Badino, 2004;
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Lismonde, 2002). If tg, is the period of
sinusoidal wave we have that the “penetration
length” is

|2:$t4
P sin

T

If the temperature fluctuation has a step
shape, the propagation length is more difficult
to define. The penetration of thermal shock of
amplitude AT is described in terms of rock

temperature increase at depth x at time t, by
equation (Isachenko, 1969)

T(X,t): AT|1- er{ﬁ
R

Where erf(u) is the Error Function. The figure
(Fig. 6) shows the results at different times. A
discussion about the properties of this solution
can be found in (Lismonde, 2002).
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Internal rock temperature increases due to a step
disturb of +1°C. Situations of temperature fields at ime
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80 100 | Fig. 6. Diffusion in rock of
one step temperature

increase on its surface.

The last equation suggests that a step thermal
wave is able to reach a depth x in a time t or,
vice versa, after a time t the thermal disturbance
has reached the depth x, and the relation
between the two quantities is given by the
argument of Error Function. More precisely it is
possible to show (for example, classically
(Laidler and Meiser, 1995) that

x> ~ 2agt

Then the penetration in rock up to depth Z of
a cool wave requires a time-scale Aty

Z2
AtcooI = 2
ar
The estimation is heavily approximated,
because we are not looking for the complete
cooling of the mountain, but for the equilibrium

temperature field formation inside it, what is
attained not when the whole rock is at the same

temperature of the surface, but when its
temperature has attained the “stationary
temperature field” geothermal gradient seen in
the previous chapter. Nevertheless it makes no
sense to try to perform exact calculations, which
in any case work with unrealistic forms of
mountain.

We can conclude that the heating and the
cooling time-scale up to the equilibrium
configuration are almost the same, and they do
not depend on the temperature drop, then at
depth Z in metres we have

22

At =——
% 2a,

= Aty = Al [1.1]

In the case of compact rock we can assume
that the equilibration time scale in years is given

by
2
At,=0.01 Z° [y]
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This estimation is very important for our
discussion. In the next chapters we are going to
consider water and geothermal fluxes that have
attained stationary conditions. It is then obvious
that if the water flow has begun from a time that
is much smaller than that of equilibration time,
it is not possible to assume that the system has
attained a general equilibrium configuration,
what in fact happens in the artificial
excavations. This is the reason why the mines
are hot.

2. Thebasic approach to the problem

The problem of infiltration temperature

The classical Desio’s formula (Celico, 1986)
that gives the minimum depth attained by
geothermal water is based on the assumption
that underground there exists a first layer
(heterotermic) in thermal contact with the
atmosphere with essentially the temperature of
local inflowing fluids, which have a temperature
Ty quite precisely (but in general, a little lower,
(Badino, 2004)) equal to the local yearly
temperature T,... Below this first layer the rock
temperature increases in conductive regime
(homotermic region).

The heterotermic layer is also called “active
layer” (US Bureau of Mines, 1996), mainly
because the seasonal variations can create icing.

It is necessary to note, nevertheless, that
some problems do exist in the definition of
homotermic layer (Schoeller, 1962; Celico,
1986), because it is considered the layer where
temperature does not depend on atmospheric
temperature variations, not the layer where
temperature is equal to the local average of the
atmosphere. It is then defined on the basis of its
temperature stability, not on the basis of its
thermal contact, if with atmosphere or with deep
rocks. Really in rock with deep aquifers we
meet a heterotermic layer with seasonal
fluctuations (some score of metres), a layer
above the aquifer (included) at T, (Luetscher,
2004; Badino, 2005), a thin layer of thermal
contact deep rocks-aquifer, where a relatively
sudden  temperature  increase, probably
dependent of aquifer permeability, is possible
(Goy, 1996; Badino, unpubl. 2005). We would
call it the “geothermal exchange layer”. Below
this region, a regular temperature increase in
deep rocks is found. The scenario is then more

complex, but it is better to postpone a detailed
discussion to a future work.

We can spend some words about the exact
value of Ty and its relation with T.. Really T,
depends on the altitude, and on average
decreases of 6-6.5°C per kilometre, as described
with the International Standard Atmosphere.
Also at a first approach it looks better to think
that the rock assumes not the average yearly
temperature of the atmosphere T,., but the
average temperature of waters at the infiltration
point, that is quite lower because the rain waters
in alpine karst are generally associated with
colder periods (but in tropics with warmer
periods); really, many other corrections are
necessary to estimate the local rock
temperatures (Badino, 2004).

Another corrective term, already cited above,
appears during the underground flow because
the temperature increase of underground waters
along their travel is different from outside,
where the waters follow the ISA mean lapse rate
(6 °C per kilometre of fall). Underground, in
adiabatic conditions the theoretical value of
water temperature increase is 2.34°C per
kilometre of fall, but the experimental values
into the caves, where energy exchanges with the
air are possible, are around -3 and -4°C km™.
Really, we can assume that the water
temperature that has infiltrated at altitude H
[km], when it arrives at level 0 is some (3-4)xH
[°C] hotter, then sensibly colder than the
corresponding infiltrating waters at that altitude.

In detailed calculations these effects, that
create a difference between the actual cave
temperature T, and the local yearly temperature
at its same altitude T,,., have to be taken into
account, but in our discussion they are
completely negligible.

The energy release to groundwater

There is an obvious approach to consider the
role of geothermal flux.

In the wupper Earth surface layers the
geothermal energy is essentially intercepted by
water that releases it to the atmosphere when it
goes out from springs.

The energy that comes onto a large surface A
is obviously F4A, and it is very regular in time.
Let us suppose that it is absorbed by a mass M:
Its temperature increase rate is then given by the
condition
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FyAdt=C,M dT

Where C,, is the water thermal capacity, that
is
ar _ FeA

da CM

Then if we know the shielding mass M we
can calculate its temperature variation with
time, but how large is M? Reasonably it is the
mass of groundwater, but it changes seasonally,
depends on rock characteristics and so on. Still
worse, the previous equation says that the
temperature continues to increase because the
mass is stable and the energy flux continues.
The equation gives us a temperature-changing
rate, not a temperature variation.

It is easy to avoid these problems. Really the
mass M can change, but its water is almost
continuously flowing, which means that some
water enters cold in the mass M, and on average
the same quantity flows away from some other
side, warmer. We will impose a condition of
steady state and calculate the temperature
variation of the flowing water, independently on
M and, above all, on time.

The geothermal energy flux is very regular
but the groundwater flow in general it is not.
We then may expect that the temperature
change fluctuates, also if we consider the over-
simplified system of a single water mass M and
we neglect other problems like the drainage
network structure and mixtures between
different branches that depend on the water flow
rate.

So, the temperature changes fluctuate, but we
are going to estimate the average value of
temperature increase due to geothermal flux.

The groundwater temperature increase

It is easy to estimate the flowing water
temperature increase, assuming the powerful
and reasonable hypothesis that on average the
system is stationary. This means that the
thermal energy inflowing in M from Earth is, on
average, going out as water flux enthalpy
increase. In this way we have not to consider the
mass M, that we cannot know, but only the
outgoing flux from it, because our steady state
assumption states also that the temperature of M
does not change with time (on average...).

Let us estimate the water flux out-flowing
from a region of surface A, which thermally
interact underground. If the precipitation is P (in
kg m'zs'l), the infiltration is P minus the part P
“lost” outside due to evaporation. This part
depends on climate, surface type and so on; in
temperate regions ranges between 30 and 40%
of total, but in deserts can rise to 90% (Celico,
1986). With this assumption the enthalpy
extracted from the system is (P-Pou)ATg A,
where AT, is the water temperature increase
during deep flow (Fig. 7). The condition of
stationarity implies that on average the
temperature cannot change in time and then

FqA=(P-PR,) C, AT A

That solves our problem. We can change
units, calling P* the infiltration in [mm a™], to
obtain

~ 0.06
* 42x10°(P-P

out

~ 500
T

[c] [21]

Fig. 7. Interception of geothermal energy flux by a
flat aquifer. In stationary approximation the water is
heated and the upper rocks are completely shielded.

The upper parts of drainage systems (for
instance the caves, highly permeable) are almost
exactly at the external average local
temperature, therefore the water is in general
warmed of AT, between the lowest cave parts
and the springs, that is along the flow in the
phreatic systems.
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In alpine karsts P* is some 1000 mm a™ and
then the water average temperature increase due
to geothermal energy is some 0.5°C.

It is a small term, very difficult to measure,
and really it has never been measured. But it is
not always so small, a temperature increase of
5°C between the caves and the springs has been
measured in Cuatro Ciénegas, a figure that
corresponds to an infiltration (P*-P,,)=100 mm
a’' in this desert region of Coahuila, Mexico

(AA. VV., 2004).

Therefore it would theoretically be possible
to estimate the average infiltrating flow
measuring this temperature increase, but it is a
measure quite difficult to do with some
accuracy, because it is the difference of two
uncertain parameters, and other processes surely
occur along the water rock crossing.

The plane watertable

We have used these calculations in a previous
work (Badino, 1995) to explain why the karstic
mountains are so cold, therefore excluding a
significant role of geothermal flux in
underground climate definition, because the
energy flow from Earth depths is easily
shielded. This very natural approach to refuse,
in general, any role to the geothermal flux, it
was not original, it is a quite traditional point of
view.

Bogli (Bogli, 1980) estimates reasonably 0.2
°C “to prevent the karstified zone above from
being geo-thermally heated up”, that is a very
interesting idea that we shall meet again. In a
very interesting and complete paper Mathey
(Mathey, 1974) estimates a maximum of 0.55
°C. More recently Jeannin et al. (1997) estimate
the specific discharge of a karstic spring (the
equivalent of infiltration) between 30 and 3000
mm a”'. The first figure seems too low (almost
three times dryer than the North Mexico
deserts), but in this paper it is used an energy
flux too low by a factor thousand, to finish to
say that the temperature increase, that has
physical dimension [°C], is “less than 0.1 °C/a”,
where really the 30 mm a”' case would be
warmed by some 15 °C.

Let us return to this estimation. We have
obtained the average water temperature increase
and we could now begin to calculate the
fluctuations dependence on discharge and so on.
But we are dealing with conduits, not with plane
watertables. Are these calculations and

assumptions true for similar “discrete” systems?
The general answer is that no, they are not
generally correct.

The water flows along definite branches, that
do not cover a large surface and with a general
shape that is far from regular. The complete
shielding assumption is not reasonable for
karstic drainage.

3. Theunderground temperaturefield
with a drainage network

The problem

The scenario described above (a regular, flat,
diffuse water table) can sometimes be correct
but in general it gives completely wrong results
in the internal rock temperature field
estimations.

To study a more real model it is necessary to
estimate the energy interception made by a
system (a thermodynamical sink) that is buried
in a semi-infinite medium where a thermal
energy flux is flowing from infinite.

Let us consider the problem details.

We have a semi-infinite rock volume in
which a thermal flux Fy is coming from below.
It creates a temperature gradient given by:

ar _Fy
oz K

r

Where we have assumed the depth z as
positive downwards. The temperature field at
depth H below the surface (or, better, below the
heterotermic layer) it is therefore given by

T(H)=T@+G§E}4:T5+G%qH

r

We have previously seen that T is essentially
the local T,.. It is very natural to suppose that
the geothermal energy intercepted by a deep
structure is that given in previous chapters, that
is (geothermal flux)x(structure area), therefore

W = AF, [3.1]

This means that the energy intercepted by a
“cave” is proportional to its surface in the
direction of energy flux. It is a very natural
assumption, but it is false.
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The fact that, up to now, has not been
considered is this: If we bury a system able to
intercept and to evacuate elsewhere the energy,
the whole temperature field in the rock is
altered and then the flux itself changes.

The geothermal field with a cave

The problem of temperature field calculation
in this configuration has to be solved with these
boundary conditions:

1) The geothermal flux from infinite is
constant, Fy;

2) The temperature on the surface is Ty
constant everywhere;

3) The cave temperature is Ty, the same as on
the surface (we have sufficiently discussed the
limits of this assumption);

4) At the infinite the temperature field is not
disturbed by the cave existence.

These conditions imply a flat external
topography and assume that the infiltrated water
heating from surface to the cave is negligible.

We said that if the cave has an area A, it is
natural to assume that the absorbed geothermal
energy is FyxA [Eq 3.1]. Is this correct? Let us
firstly discuss it qualitatively, drawing the
isothermal surfaces in the rock. The figure (Fig.
8) shows a reasonable situation that respects the
boundary conditions. It is possible to see two
things:

1) The isothermal surfaces have a tendency to
converge, then to be focussed, onto the cave;

2) They are “compressed” around the cave.

If we remember that the thermal flux flows
along the maximum T variation (i.e. along the
grad (T), which means perpendicularly to the
isothermal surfaces) and that its value is
proportional to the gradient of T, we have that
the two features are equivalent to say that: 1) the
cave focus on itself the geothermal flux and, ii)
in the rock surrounding the cave the geothermal
flux (and the geothermal gradient) is much more
intense than the natural one...

So, the assumption that gave us the [Eq. 3.1]
is surely wrong.

But is it possible to calculate the correct
value? Quite surprisingly it seems that nobody
has studied this important problem.

Before we look for the solution, we have to
make some note about the enormous weight of

the stationarity assumption. Whatever initial
temperature field condition will converge to
asymptotic values which are solution of Laplace
equation, but this convergence requires time.
During this time, which is of the order of
equilibration time scale introduced above [Eq.
1.1], the difference between the real field (in
transient phase) and the asympotic one
(stationary phase) can be important. If the
equilibration time is comparable with the typical
changes of boundary conditions (global climatic
changes, infiltration of hot waters or so on), the
system can never be considered in a true
stationary phase, and the equation given by this
assumption has to be considered heavily
approximated. This limit of stationary
assumption gives strong uncertainty in the
temperature fields estimations for the new deep
alpine tunnels, which have very long

equilibration times (Badino, unpubl. 2005), and
affects also our next considerations.

SXBIEM S &

Fig. 8. Qualitative view of the stationary thermal
field due to the interaction between the geothermal
flux and a conduit with strong drainage (system S).
The isothermal surfaces are affected in a wide
region, and the cave temperature is Tj.

The general solution

Therefore the problem of calculation of
stationary temperature fields is very difficult to
solve just with the easy boundary conditions
given in the previous chapter. What to expect,
then, when we will have to assume finite energy
transfer rate inside the cave or situations in
which the temperature of the cave itself is
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determined by the geothermal flux? And what
monstrous form may assume the solution in a
non-stationary case, if we want to consider, for
instance, the cooling of a mountain during the
karst creation inside it?

Nevertheless there is a simple way to lead
this problem to typical situations of engineering
thermal exchange.

Let us show how, considering three different
systems, S, S’ and S”:

1) The main system just now described, the
real case, which we call from hereafter S (Fig.
8);

2) The system composed only of semi-infinite
undisturbed rock, without caves and with

external temperature equal to 0, which we call
from hereafter S° (Fig. 9);

3) The more complex system S”, (Fig. 10),
composed by a cave at a particular temperature
T” buried in a semi-infinite rock, that releases
energy to the surface at temperature Ty. Also the
rock at the infinite is assumed to have
temperature T,. In this last ideal system S” there
is no geothermal flux at all.

We are then ready to do the final step,
assuming that T” in S has a value given by:

" th
Ti=Ty+ —H [3.2]

r

T=AT  depthH

Fig. 9. Qualitative view of the stationary thermal
field due to the interaction between the geothermal
flux and a conduit with no drainage (system S”). The
isothermal surfaces are unaffected, and the cave
temperature is higher than Tj.

where H is the cave depth from the surface. We
then assume that the cave in S” has exactly the
temperature of the rock at depth H in the system
S’ plus T.

Let us consider now the three temperature
fields. They are the solution of general Fourier
equation (Isachenko, 1969)

10T
V-VT(x,y, Z):Eﬁ

That in our case, not time dependent, it
reduces to the Laplace equation

VT =0

It means that the T fields behave like a huge
class of phenomena for which the sum of the
three spatial second derivatives is zero. The
functions that satisfy these conditions are called
“Harmonic Functions”, and are among the most
important and studied functions in Physics
(Carslaw and Jaeger, 1959; Bejan, 1993;
Balcerzak and Raynor, 1961; Nashchokin,
1979). By the way, it would be possible to solve
our fields using solutions given for different and
well-studied problems like, for instance, the
electric field due to particular charge
distributions, but we can do better for our

purpose.

Fig. 10. Qualitative view of the stationary thermal
field between a “hot conduit” at temperature T and
the surface at Ty (system S”). The isothermal
surfaces are finite, closed and contain the conduit.
Heat diffusion problems like this one are quite usual
in thermal exchanges engineering.
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The field structure around S, that we have
qualitatively shown (Fig. 8), is our unknown
term.

The field structure of the second S’ it is
obvious, it is composed by many horizontal
parallel lines (or planes, in 3-d) for T-field and
vertical vectors for thermal fluxes.

The third system is the most exciting. There
are almost no lines all around (neither for T nor
for thermal fluxes) unless in the region between
the cave and the surface, because the
temperature difference between the “hot cave”
and the surface and also the “infinite”, drives an
energy flux. From the other side, this situation is
a very usual situation for engineering, because
the “hot cave” can be a tube transporting hot
fluid buried in some engine...

Now we can do the last step: We state that the
unknown T field of the system S is given by

T2 =T'(xY.2)-T"(x.2) 33

That is, we can subtract the (very complex,
but very common) T” field from the trivial T” to
obtain our solution T.

It is possible to prove this theorem in three
steps:

1) The Laplace equation is linear, then if T,
and T, are solutions, also (T;-T,) is a solution:
here in particular T* and T” are solutions, then
also T is;

2) The boundary conditions written above are
satisfied by a T field given by (Eq 3.3);

3) Then T is a solution of our equation with
these particular boundary conditions, but the
solution is unique for the Uniqueness Theorem
for Harmonic Functions then, T is the solution...

The base of this proof is the linearity of the
grad operator, which allows the first property.
But also the temporal derivative is linear, and
then we have another independent fundamental
result: The T field may be calculated by this
way also for transient conditions, if we use the
equivalent transient solutions for the T”. We are
not ready to use here this corollary, probably
very important. The geothermal energy focusing
on caves

It is interesting to look for other
consequences. Let us return to our [Eq. 3.3] to
apply the grad operator (that in equation will be
noted with V) and multiplying for the rock
conductivity Kg

KoVT =K VT'=K VT"

These terms are now the energy fluxes that
flow through the systems S, S’ and S”, and then

F(x,y,2)=F'(x,y,2)-F"(x,y,2)

But the energy flux in the system S’ is simply
-Fyk where k is the unit vector in the z-
direction, and then

F(xy,2)=-Fk—F"(x,y,2)

This means that we are able to calculate the
energy fluxes in the system S with vectorial
subtractions between the S” system, complex
but already studied, and the trivial S’. If we
multiply this equation by the surface element dS
and integrate on a wide surface A that contains
all the surroundings of the cave we have

FA=-F,A-F"A

The term FxA describes the flux outgoing
from the surface in presence of the cave, FyxA
the total flux if it would not be the cave, than
the energy flux captured by the cave is the
difference between the two

WCapt = FcaptA= thA— FA= [3.4]
=F,A-F,A+F"A=F"A

In this way the problem of energy
interception of a cold cave buried in an energy
flux is reduced to the energy transfer between a
hot cave and the surface.

Now it is possible to study the T” solutions,
going to the heat transfer engineering to use its
results.

The shape factor

The thermal transfer engineering uses a very
effective approach to the problem of complex-
shape systems.

Let us return back to the fundamental
equation of conductivity, now written in three
dimensions. The thermal flux through a surface
element dA is given by

dW =K, VT dA

Where Ky is the body (rock) conductivity.
We may consider two sources at definite
temperature T; and T,. The thermal energy is
drained between the two by an intermediate
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temperature field configuration, which depends
on the system shape in an extremely complex
manner.

Let us call A, the isothermal surfaces that
we can draw between the two sources; these
surfaces can be infinite, also if neither of the
two bodies is infinite.

The grad (T) must be perpendicular to these
surfaces because the thermal flux vector cannot
have any component along an isothermal
surface, and then the thermal energy flows
normally to these surfaces.

Let us call n the coordinate along the thermal
flow path. The previous equation gives the
thermal flux as

dw =K, AP
on

The total flux between the two sources is then
given by the integral of thermal flux on any of
these surfaces. It is not important to choose one
or the other, because we have assumed that the
only two “heat producer or destroyer” are these
two sources, and the energy must be conserved.
The thermal transfer through one of these
surfaces is therefore

T
W=-Kg 8_ dA
As On
We define now a new dimensionless

temperature T* (that is in fact a relative
temperature variation in the path between the
two sources) as

Te= 1N
Tz _Tl
Where T, and T, are the sources
temperatures. Then it is possible to write
oT *
W=-K, (T,-T, —dA
R ( 2 1) Ae 0N

In this way the sources temperatures are
analytically separated from the system
geometry, which now is completely included in
the last integral, which is nevertheless extremely
complex also for trivial configuration.

This equation has to be compared with the
usual equation which describes the thermal
energy transfer between two sources separated
by a uniform distance Az through an area A

T -T
Wz_KRA( 2Az lj

We see that the integral behaves like the ratio
between A and the sources distance, and then
the system geometry is included in this term

A oT *
(_j: dA

Az Ao ON

The term in brackets is the ratio between the
surface crossed by the thermal energy and the
distance between the two sources. It is a

“length” that characterises each system shape
that exchanges energy among two sources.

This scale-length is called “shape factor” in
literature (Carslaw, 1959; Hahne, 1975;
Holman, 1996; Ozisik and Necati, 1993; Kays,
1966). We adopt unwillingly the usual notation,
that uses the “S” for a length, but we shall write
Sk, hoping to reduce (perhaps...) confusion with
the subscript “F”. Then

5 - oT* A [3.5]

As On

The geothermal power absorbed by the cave
can be then written as

W = K, S.AT [3.6]

Now we have to study the way to use this
result.

The “ shape factor” calculation

We do not have to study in details the way to
calculate the shape factors. Still in simple
configuration the isothermal surface calculation
is very complex and the integration is in general
extremely difficult, but the heat-exchanges
literature contains many shape factors worked
out for the most common geometrical
configurations. Most of these results have been
obtained based on advanced analytical methods
(conformal mapping, superposition, special
transforms, analogies with the electrical
potential studies and so on); it is not useful for
us here to study these approaches.

Table 2 shows these shape factors in
interesting situation (Holman, 1996)

We are going to use these shape factors, but
first it is necessary to answer an important
question: Are the shape factors linear? Let us
discuss the question with an example.
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TABLE 2

Semi-inﬁnite medium vyith 47R T1
isothermal surface and isothermal Ss=—"-—-—
spherical cavity of radius R at depth 1-R/2H
H T2

R
Semi-inﬁnite medium vyith 47R T1
isothermal surface and isothermal SF = =
disc of radius R parallel to the 7 /2R—tan (R/ 2H )
surface at depth H @

R
Semi-inﬁnite medium vyith 27 T1
isothermal surface and isothermal S = — T
cylindrical cavity of length L of cosh (H / R)
radius R, parallel to the surface at MR
depth H

«—L

Semi-inﬁnite medium vyith 27 H T1
isothermal surface and isothermal S=—"—"7"——
cylindrical hole of radius R drilled to ln(2 H/ R)
a depth H normal to the surface.

R
Semi-inﬁnite medium vyith 27W T1
isothermal surface and isothermal S =———
plate (width W, long L, H>>W) ln(4 L/ W)
parallel to the surface at depth H

If we know the shape factors of two
independent systems S; and S,, say, one
composed by two cylinders and the other of a
sphere and a cylinder, can we consider a third
system S; (in this case, two cylinders and a
sphere) as composed by some “sum” of the two
firsts, and consider that its shape factor is given
by some “sum” of the two?

Unfortunately the answer is: No, we cannot.
The temperature fields are linear and then the S;
temperature field can really be calculated from
the S; and S,, but it changes completely the
equipotential surfaces on which the integration
is performed to ‘“average” the flux in the
integral [Eq. 3.5]. It is therefore necessary to
recalculate these surfaces and to repeat the
integration that will give a result that has no
direct connection with the integrations of S; and
S, fields.

This means that, for instance, the knowledge
of the shape factor of a conduit buried in a semi-
infinite medium tells us almost nothing about
the shape factor of two parallel conduits in the
same medium, unless their distance would be so

large that each temperature field is not affected
by the other. Only in this latter case the shape
factor of the two conduits is the sum of the
shape factor of two single conduits, but in
general it is not so.

4. Theinterception of geothermal flux by
caves

The geothermal cross sections of caves

It is now possible to apply the previous
results to the problem of interaction between
caves and geothermal flux. It is stated above
that, to satisfy the boundary conditions, the T”
temperature has to be

th
T"=T,+—%H
KI’

As a consequence, the equation that gives the
power intercepted

W =K, S.AT
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Fig. 11. A deep draining conduit can create a very
large geothermal shadow on the surface. Its scale
size is not the conduit size, but the conduit depth.

It is reduced to the very simple result

F
W=Kg S 2 H=F,SH -

That is

Intercepted flux =
= (geothermal flux)x (caveshapefactor )x (cavedepth)

Table 3 shows that the scale-size of shape
factor is some 1-10 times larger that the scale-
size of the underground structure. The last
equation has to be compared with [Eq. 3.1].

Therefore, the effective area (we call it
“thermal cross section”) for thermal flux
absorption of an underground conduit (Fig. 11)
is not its geometrical area but instead SgH,
roughly 10 times the cave size multiplied by its
depth, then it is always enormously greater than
the cave’s actual area! This amplification is due
to the “converging lens” effect created by the
presence of cold fluids in the cave that affects
the whole structure of the rock temperature
field.

For example, let us estimate the geothermal
power intercepted by a conduit at a depth
H=500 m with radius r=0.5 m and long L=300
m. We may use the shape factor given by

2L 1900
S: = =
cosh™ (Hj 7.6

r

=250m

With Fu=2x10° J m’a™ we have

W=F,SH=2x10°(250x500)=2.5x10"Ja™'

Which is really a big power. It is possible to
study how much this figure changes with
conduit radius. Table 3 shows the energy
collected, by conduits of different sizes.

The result in the third column at first appears
surprising, because it shows that the variation of
the conduit size does not affect so much the
intercepted power, but it is reasonable because
the power is not absorbed by the conduit
surface, but by the focusing effect of conduit on
the temperature field.

The fourth column shows the surprisingly
high average thermal flux (note that are Watt
per square metre!) that enters through the
conduit transverse surface. For comparison, the
Sun deposits on average 1.4 kWm™ on the Earth
surface: The geothermal energy deposition on
small conduits is then of the same order! This
appears to be absolutely unbelievable, but is it
true?

Roughly, the answer is that: Yes, it is true.
But there are other important details to be taken
into account.

The heating of water in deep conduits

Let us discuss the effective water heating in
the focusing conduit, calling T its temperature at
the springs.

In the previous discussion, it was made the
fundamental assumption that the water
temperature T, in the conduit does not change
and really it is its low temperature that changes
the whole temperature field of surrounding rock.
This is equivalent to assume that the water flux
(or air flux in case of dry caves) is so large that
the enthalpy intercepted by the conduit flows
away in the form of a small temperature
increase of a very large amount of fluid, and
does not really affect the conduit temperature.
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TABLE 3

Conduit radius r Shape factor Sg | Intercepted power | Average Flux on
[m] [m] [Jal] conduit [W m?]

0.01 165 1.7x10" 900

0.1 210 2.1x10" 110

0.5 250 2.5x10" 25

310 3.1x10" 8

360 3.6x10" 3.8

We have then that the maximum energy
extraction efficiency is obtained if the exit
temperature T is almost equal to T,.

We have the opposite limit, if the warming is
so large that the water temperature T becomes
T”, the temperature of undisturbed rock. In this
case the conduit becomes completely
“transparent” to the geothermal flux, the
temperature field assumes a regular geothermal
gradient not affected by the cave presence and,
as a consequence, just a little energy is
intercepted. The water into the conduit is then a
hot “mine water” and the classical, “wrong”
solution [Eq. 3.1] becomes correct.

The real cases are intermediate between these
two extremes, because in first approximation the
water really warms but, as a consequence, its
capability to intercept geothermal energy is
reduced, because the temperature difference
between the rock and the water becomes
smaller. Really the scenario is still more
complex, because the water temperature
increases along its path underground: It enters
cool, very efficient in geothermal energy
focussing, but as long as it warms downstream
its capability to intercept the geothermal flux
decrease. The non-linearity of Sg forbids correct
analytical solutions, but we can make some
other step.

The critical shielding discharge

It is possible to estimate the water heating
along a deep conduit and its final temperature as
a function of conduit parameters.

We have just seen that two extreme scenarios
are possible. If the fluid flux is very large the
rock temperature field is completely changed,
the geothermal energy flow interception is
maximum and the water flows out at T,. At the
other extreme, if the water flow is very small,
the rock temperature field is completely
undisturbed, the geothermal energy flow to the

water is minimum and the water flows out quite
hot, at T”.

Let us define the “critical fluid flux” Q. that
divides these two scenarios in a usually
idealised way. We look for a water flux Q. that
enters at temperature Ty and flows out at T” in
stationary conditions. The enthalpy subtracted
to the system is

dE=C, Q,dt(T"-T,)

If we admit that the system parameters do not
depend on time, this enthalpy deficit must be
given by the incoming geothermal flux Wdt.
Then using [Eq. 4.1] we have

F,SHdt=C,Q.dt(T"-T,)

But T” is given by

F

T'=T,+—%H
K

R

And we obtain

M K. L
Q="F = [kes™]

w

[4.2]

Then the critical flux is simply the conduit
shape factor “scaled” by a dimensional term
(rock conductivity divided by the thermal
capacity of flowing fluid). In terms of volume
flux

d_V:%: KeSe [mSS_l]
da p, Cuou

From another point of view, Q. can be
considered the critical flux below which it is
possible to consider that the rock temperature
field is undisturbed. Or, from still another point
of view, we can be sure that a water flux much
larger than Q. perturbs the rock.
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The solution [Eq. 4.2], which is surprisingly
simple in comparison with the bloody analytical
difficulties of the problem, is able to give also
the velocity that water must have to satisfy the
equation. If the conduit radius is r, then

veg L _KeS

xr’p, C, =xr’p,

In the case of a water draining conduit in
limestone we have

23
Qeveter =

_ -4 -1
water WS; =5.5x%10 S: [kgs ]

[4.3]

If the conduit drains air, the critical flux
becomes

2.3

Qc,air = W

§ =2.3x107§ [kes™ |

The shape factor is in general comparable
with the conduit length, usually some 10°-10*
m, therefore the water flux able to create
changes in the rock temperature fields is in
general quite small. Neither the air flux
requested to cool the rock it is too large, in
absolute, but its small thermal capacity and its
very small density cause a large volume flow
request.

It is nevertheless necessary to remember that
temperature field changes are only possible if
the fluid fluxes have had sufficient time (more
than Aty defined in [Eq. 1.1]) to converge at the
stationary (equilibrium) state.

The critical flux Q. for air or water are
extremely important for another reason: They
are the air or water fluxes able to shadow the
upper rock from the geothermal flux, forcing its
temperature near to the average yearly
temperature of external atmosphere, T,ye.

Finally, it is important to note that this work
was originally a chapter of an underground
climate physics book. Its purpose was to
estimate when we could consider a cave as
“shielded” from the upward geothermal energy
flux. If the flux is much larger than Q. we are
sure that the mountain parts (and caves) above
the conduit are shielded; if the flux is well
below the critical value the conduit is
“transparent” to the geothermal energy and we
have to include also its contribution to analyse
the underground climate in the rock above the
conduit.

We are going to improve this point of view
and discover that Q. has another, still more
important, meaning.

Geothermal power intercepted

We can calculate the effective cave
temperature T at the equilibrium and solve the
inverse problem, the estimation of flowing
depth of hot spring waters.

The final system temperature must lie
between T, (near it for high water discharges)
and T” (near it for low discharges). Let us call
Wy the maximum power that it can be
subtracted by our system

W, =F,S:H =0.06S.H [W] [4.4]

Which is valuable for very large water flows
and outflowing temperature around Tj.

If we call T the real (unknown) conduit
temperature at the equilibrium, the residual
outgoing upward flux is not zero, because it
“filters” an energy given by

W, = KS:(T-T,)

The difference between Wy and Wy, is the
net flux entering inside the cave from below. If
the conduit is at temperature T, the energy
conservation states

W, =W, W, = F,S:H - K S (T -T,)
But from [Eq. 3.2] we have
_ F,H
RO,

Then

Vvin=thS:H[1_T"_T0j=WM(Tn_T]
T, T s

If T=T, the equation reduces to W;=Wy
(which describes the “system S” situation), and
if T=T" the term W;, vanishes, as expected.

Therefore, the geothermal flux intercepted by
the cave is reduced as long as its final
temperature T increases: The cave is becoming
“transparent”, and this equation describes its
“fading” inside the temperature field.
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Temperature and deposited power versus
discharge

Usually we have very small possibilities to
establish a natural conduit discharge. We deal
with actual discharge Q, and we can only try to
understand how this water (or air) flow is
affected by the geothermal flux.

Let us then return to the application of the
First Principle [Eq. 4.5]; if we call Q the total
actual water flux in the system, it gives

T'-T
W, | ——|= T-T :
M(T,,_TOJ C.Q(T-Ty) [4.6]

Where we have assumed that the whole
entering energy flux goes to warm the water
flux. This statement is true if we admit that the
thermal energy is released on the whole system,
ie. it is true if the temperature T, which is
actually the output water temperature, can be
used to describe the whole system, also in its
further parts. It is a strong, and in general false,
hypothesis, but it is better to assume it as true
and only afterwards have a look on what
happens in more real situations.

With the previous results and trivial
calculations, we have
0= W, T"-T _
C,(T-T )\ T"-T,
[4.7]

W, T o T-T
S C, (=T N\T-T,) ~T-T,

This important equation relates the actual flux
Q to the output temperature T in terms of the
critical shielding flux Q. and the surrounding
temperatures. It is very easy to solve it to obtain

T"+ 2T0 T T

T= Qé = 1+q ¢ [4.8]
1+ +d
Q
Where we have called

Q
q=— 4.

Q. 4]

The excess temperature above the “external
average” Ty is then T-T,, but its natural scale is

W, =W, T,,_T :iWM
T"-T, 1+q

the ratio between this difference and the
theoretical, maximum difference T”-T,. Then

T-T, :T1+_C;T°-TO =(T"-T, ﬁj
- +

And calling the “excess temperature ratio” of
groundwater, that is the amount of actual
heating in comparison with the maximum
attainable, we have

rT:T‘TO __1 [4.10]
T"-T, 1+q

With the assumption [Eq. 4.9] we can rewrite
the [Eq. 4.5]

[4.11]

We have then two fundamental equations, [Eq.
4.10] and [Eq. 4.11], which connect the internal
drainage Q to the outgoing temperature and to
the intercepted geothermal flux. The two
graphics (Fig. 12) describe the behaviour of the
out-flowing water temperature T and of water
absorbed energy as a function of discharge,
obviously measured in function of our nice
scale-discharge Q. (it can be adapted to air flow
with trivial changes).

We have previously discussed the Q. as the
“shielding flux” and Wy, as the “maximal
intercepted flux”. Now we see that they are
mainly the natural scales of fluid flow and of
geothermal power flux intercepted, exactly as
happens with the Similarity Numbers, always a
ratio between a parameter and a scale-value for
1it.

Geothermal flow absorbed Win and
Excess temperature ratio rT vs q

ri{q)=[T(q)-TOY[T"-TO]

=
®

Win/Wn and r1
=
[+

Wialq) Wy

=
=

B
(X}

o 2 4 B B 10
q=Q/0c

Fig. 12. Water temperature increase and intercepted
power by a deep conduit versus water discharge.
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Really, the apparition of a natural scale-value
of the main variables, the fluid flow and the
geothermal power, may suggest to use this
typical thermo- or fluid-physicists approach,
calling the Q/Q. and W/Wy, terms as Someone
Number, to create two underground companions
to Nusselt, Reynolds, Peclet, Froude and so on
Numbers.

Nevertheless we do not like this way to
describe  physical  processes, preferring
(aesthetically, because mathematically it is
absolutely equivalent...) to work with the scale
dimensions. Therefore we do not propose this
Similarity approach although, if a name must be
given to the geothermal “heat” term W/Wy;, we
strongly suggest “Alighieri Number”...

The inverse problem

It is obviously of main interest the problem of
deducing the provenance depth of a hot spring.
The traditional Desio formula (Celico, 1986)
assumes essentially that a water flux at
temperature T,, comes from a depth Hy at which
the temperature of undisturbed rock is Ty, that
is

=21, -1) B2
FQT

This is true for “mine waters”, deposits of
resident waters, which have essentially the T”
temperature, but we have seen that this
assumption is in general false, because a natural
water flux had surely succeeded to disturb the
whole rock temperature field. We have then to
use [Eq. 4.8] and [Eq. 4.2] to write

T,-T, =(T"-T, )(1 +gj =
Q

c

F -1
K s 55x107*S,

That correlates the temperature increment
above the local temperature to the unknown
depth H, to the discharge Q and the conduit
shape factor Sg. Then

H:ﬁ(TW—T0 1+L_4j
F 55x107&

gt

Comparing with [Eq. 4.12] we obtain the
solution for thermally disturbed rock (Q average
yearly discharge)

H:HO(H—Q_4 ]
5.5x107 S

This solution shows that the evaluations made
with the Desio formula [Eq. 4.12] are deeply

underestimated, unless for very small
discharges. In fact we can write
H=H,(1+q) [4.13]

It is then possible to see that the g-number is
essentially the “amplification” term of estimated
depth Hy.

The main difficulty in these formulas it is the
estimation of critical discharge Q. which
requires the knowledge of the conduit shape
factor, in generally unknown. In case studies it
is necessary to take into account the geological
context to estimate the probable conduit shape
in order to calculate the critical discharge Q..

Let us do an example. In many case, for
instance, we can assume a ‘“U” shape for the
whole drainage system. A similar conduit can
simply be approximated with a conduit of length
L at depth H, because its two vertical branches
do not matter for the shape factor, being merged
in a rock shielded by the deep drainage. Then

27k

> = cosh '(H/R) 14]

The Table 4 gives the value of inverse
hyperbolic cosine term for typical conduit
radius and depths.

TABLE 4
H|/R— |0.1m Im 10 m 100 m
200 8.3 6.0 3.7 1.3
500 9.2 6.9 4.6 2.3
2000 10.6 8.3 6.0 3.7

It is possible to see that, unless the nearby
“pathological” cases of the last column, the
denominator in [Eq. 4.14] is not far from 2m;
therefore for this conduit it is possible to assume
a shape factor roughly equal to its length

S ~L

The formula that estimates the water
provenance depth can then be approximated as

H ~ HO(H [4.15]

5.5><104|_j
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In general a typical deep circuit has a very
large size, many kilometres. If we call L* its
length expressed in kilometres we have, for the
circuit described above

Q. ~05L*
And finally

2
H~ H0(1+L—(3j [4.16]

It is a simple formula that estimates the
drainage depth as a function of discharge.

As an example, let us consider a spring with
an average discharge Q=20 kg s', and a
temperature 20°C above the local average. The
depth estimation [4.12] gives Hy=830 m.

If the hydro-geological context suggests a
circuit length L*=20 km, the critical discharge
is Q=11 kg s™, and then the q term is almost
equal to 2. Our formula estimates then a depth
H of 2.5 km for the circuit, much more than
supposed. ..

With this value we can return to the
geological context and, if we have other
information (like the circulation time), to more
accurate estimations of the ratio between the
depth and the radius of a deep drainage system.
A Dbetter estimation of provenance depth with
[Eq. 4.13] and [Eq. 4.14] is then possible.

It is nevertheless better to remember that we
are working with the assumption that the system
has attained stationary condition; the above
formula is then correct for water fluxes that
persist from very long times, much longer than
Ateq of [Eq. 1.1].

Temperature changes into the system

It is possible to perform a last “calibration”.

We have already noted that we are assuming
that it is possible to define univocally a system
temperature T, but this is not always true. It is
possible to speak univocally of “system
temperature” if each part of the system is
uniformly heated by the energy flux, for
instance if the head and the tail of water flux are
mixed (for instance, when the water enters in a
spherical deposit). Nevertheless this is not the
usual situation because in a real conduit the
water enters with a temperature Ty and flows
warming up to the final temperature T.

It is possible to perform a last step,
considering a long conduit L, along which the
water is heated. The term T is now the
temperature at the length x, in a section dx with
shape factor sg. The thermal flow and the
temperature increase in that section is then
given by [Eq. 4.5]

dW = dW,, —dW,, =

FyH
= Fy SeH T Se (T_To): C..QdT

0

And then
FaSH(TT s _ oo
CQ \T"-T, ) S

This is an equation that could solve the
problem, if we would able to integrate the left
part, but unfortunately this is not possible.

We have written sg and not dSg (as would be
natural) because it is not possible to pass from
the equation that gives Sg as a function of L, to
the contribution of a part dx of L to Sg. At the
end of the third chapter, we have noted that Sg
does not linearly depend on each dx part,
because it comes from an average on the whole
space and system, and it is not possible to
consider it as the result of an integration on
some dx.

For instance, the contribution of the dx at one
conduit edge covers a cone above it, and the
local sp is like that given by a small sphere,
whereas the dx in the middle of conduit gives a
very small contribution.

We can nevertheless integrate the last
equation assuming the false approximations
s;=dSr. It makes no analytical sense but it
probably introduces an error smaller than the
assumption of uniform system temperature.
Then for a conduit buried in a semi-infinite
medium at depth H

thSFH[T" de qT

CQ \T"-T,) L
Using Q. becomes

TRH(T-T Jdx_Q .
K [T" TjL o T)
q K

And integrating on x from 0 to L and on T
from Ty to T we have
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n n QCJ
T"—T =(T"-T, )exp| ——==
( O)CXP( Q

Adding and subtracting T, from the equation
left side, we have

T-T,=(T"-T,)- (T"—To)exp[—l\
q/ [4.17]

This has to be compared with [Eq. 4.10]. It is
a simple and nice equation that describes the
water heating during a flow.

The Q. term has returned, and continues to be
the scale discharge of deep conduits. If the
effective discharge Q is large (in comparison
with Q.) the water temperature at the outflow is
near the Ty, and if q is near 0 the T=T"".

The shape factor has disappeared, because
this equation is valuable everywhere the (strong
and false) s;=dSr approximation is valuable.

Nevertheless we can suppose that it is
reasonable model, and we guess that the last
equation gives a fair approximation of natural
heating processes along a conduit.

It is useful to invert again the problem to
obtain the estimated depth crossed by water of a
spring at temperature T,,.. We have

F
T,-T, = K—gt H [l - exp[— %H

And with simple passages

ol ]

_ Hy [4.18]

1- exp(— 1]
q

That corresponds to [Eq. 4.13], and reduces
to it for g~0 and g>>1. With the same
assumption of [Eq. 4.16] on shape factor, and
L* in [km], it gives

That can be considered a reasonable formula
to estimate the water provenance depth, for

water flows that have attained a steady state
situation with rock.

Returning to the previous example, of a
spring with Q=20 kgs™', and a temperature 20 °C
above the local average, H=830 m, Q=11 kg s’
' and q=2.

The corrective term to be applied to Hy with
[Eq. 4.16] it is a factor 3, but now [Eq. 4.19]
gives a factor 2.54.

Really the temperature variability along the
conduit gives [Eq. 4.19] a final heating at a
depth smaller than in the case of a “global”
heating [Eq. 4.13], but the difference does not
appear as too significant if compared with the
intrinsic uncertainties of such problems.

Seady Sate Geothermal Power Plant

In the previous chapters, it has been shown
implicitly a way to extract power from
underground, using a deep conduit that focuses
on itself large amounts of geothermal energy.
This is deeply different from the usual
Geothermal Power Plants, which extracts
energy (or, better, are believed to extract,
because cool water always focus on itself the
temperature field) from hot rock, directly
cooling it. In principle, when the rock is cooled
the power plant stops its work.

Here we have shown that the deep cooling
effect acts as an energy attractor on the cooled
rock, and then that a power plant working in
such way, it will never end its fuel.

We want here to make the next step, looking
for its “constructive” efficiency.

Consider a fluid that transfers energy Qu
from a “hot” source at Ty to a colder source at
T.. Does this process produce work? If the
energy transfer is made with “special” systems
it does: They are called “thermal engines” and
use the energy flow from Ty to Tp to produce
work. A power plant is said to “produce”
energy, but this is trivially false because the
energy cannot be neither produced nor
destroyed: It stores energy at a very low entropy
(“work™ in an entropy flow from a high
temperature (low entropy) to a low (high
entropy).

The Second Principle of Thermodynamics
states that the efficiency -that is the ratio
between the work rate given L and the heat rate
absorbed W- of a reversible thermal engine
working between the two sources is
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But we have that

AS:&(I—T—LJ
T U T,

And then
Ly =T, AS

That is, the maximum work available is given
by the product of the temperature of cold source
and entropy change during cooling, which is the
Free Energy variation in the transformation.

In the case of interaction cave-geothermal
field, the cave acts as a thermal sink, in two
phases. In the first step it intercepts a flux of
geothermal energy W (low entropy, temperature
T”) from downward, which results in a water
temperature increase from T, to T. In the second
step the energy it is released as “disordered
energy” to the atmosphere (high entropy, Ty) at
the spring. For instance, considering the deep
conduit as a geothermal power plant, we have
that its entropy production per time unit At -we
are dealing with discharge Q- is

AS= L—W+ij ~SF,H (iI—l+ijAt
T T, gl T,

Calling

_ T”_To _ thH
To KrTO

With some work and using [Eq. 6.1]

R et
At_T0 I+gA\y+1+q

This shows that the entropy production goes
to zero for g=0 and q=oo, because if the water
flow is very small the fluid final temperature is
quite high but the total energy removed is very
small; from the other side, if a lot of water flows
into the conduit, its final temperature is
essentially Ty, then the entropy is able to flow
between the rock and the water, but it is not
finally transferred to the atmosphere and to an
external “final user”.

It is easy to calculate the value qy for which
the entropy flow attains its maximum

Oy =+/7+1= =T - [
TO TO

That we can substitute in the previous
equation to obtain the maximum of entropy
flow. In natural cases the term T, is some 280
K, the T” some 350K, then the ratio is slightly
more than 1, and then

n_ =
Ll z1+l[—gt]H
T, 2\ K, T,

v =

Which gives, erasing the second-order terms,
the maximum power production of this
geothermal power plant

(A_Lj =T,AS,, = lWM (T _Toj
At o 4 T,

It is necessary to emphasize the difference
between the subtracted power Wy and the
maximum available work (or power) Ly, The
first is interesting to make some use that
requires enthalpy at constant temperature, as it
is the case of ice melting or water evaporation,
for which Wy, not Ly, 1S used. But to create
structures we need “work™ also in the physical
sense: Order, available work.

Therefore, the Lya.c terms in each water
heating and rock cooling processes are directly
connected with the entropy rate at disposal for
constructive processes, that is, they may appear
as the building rate of ordered structures, like
conduit networks.

Geothermics and phreatic conduit genesis

We have observed above that the initial
purpose of this work was to show that the
geothermal energy flux could not participate in
the characterisation of cave climate and then,
for instance, to speleogenesis (Badino, 2005).

As the reader has seen, we are showing
exactly the contrary.

Here we are going to make the last step
giving some ideas about the geothermal role in
the genesis of phreatic conduits and in general
of underwater drainage networks.
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During deep flow the underground waters are
warmed from their starting temperature T, up to
the final T, that has a theoretical maximum at
T”, as shown above.

What is the typical temperature increase? We
have seen that a conduit is able to shield the
geothermal flux like a plane watertable does,
then the scale temperature increase is around the
value given by [Eq. 2.1]

0.06 500
AT, = =——[°C
T 42x10°(P-Py,) P*[ ]

Therefore, in real cases it is in the range
between 0.2 and 3 °C, a temperature drop that
water gains during flow between the cave
bottom and the springs. Now we know that this
temperature change happens also along
conduits, not only in the “watertable”, and that
the power release is concentrated on the conduit
surface walls. How does this warming affect the
water chemistry?

We can outline the chemical behaviour of
water saturated of calcium carbonate entering in
flooded conduits.

It is well known that the carbonate
dissolution in water is very complex (Snoeyink,
1980), (Ford and Williams, 1989), (Dreybrodt,
2000) because the equilibrium state results from
the combined equilibriums of different,
interconnected reactions, which depends on
temperature, local pH and the presence of other
dissolved salts with common ions.

In the simplest case, the first equilibrium
reaction gives the amount of dissolved carbon
dioxide, for which in usual conditions the Henry
Law holds, stating that the dissolved gas
decreases with temperature and it is
proportional to its partial pressure above the
water surface. Therefore, its quantity depends
also on the kinetics of gas transport until the
surface, if it does exist.

The other reactions, which involve only water
and carbon dioxide, are the dissociation of
carbonic acid in calcium bicarbonate and H', the
dissociation of bicarbonate and the equilibrium
H" and OH in water. These dissociations tend
to increase with temperature thanks to the
increase of available energy.

The last main reaction describes the
equilibrium between the calcium carbonate and
water enriched with carbon dioxide. The

carbonate dissolution releases ions that are in
part the same already present in water.

This complex system forces to find the
solution of many different equations describing
equilibrium  kinetics, charge and mass
conservation. General solution charts are given
in (Ford and Williams, 1989); they show the
saturation values at the equilibrium for various
initial partial carbon dioxide pressures. It results
that in open systems (with release of carbon
dioxide excesses) the warming of a calcite
saturated water gives, without exceptions, a
super-saturation and then provokes a calcite, or
aragonite, deposition.

In a closed system this behaviour changes in
a complex way. Generally a super-saturation is
produced, but if the initial CO, partial pressure
is below 200 Pa (0.002 atm) and the temperature
1s below 30 °C, a calcite under-saturation
appears as result of water heating, as larger as
colder is the water.

The typical carbon dioxide partial pressure in
free atmosphere is 3.5x10* atm, then at 10 °C
the calcite equivalent content at the saturation is
around 12 mg I"". A water temperature increase
of 1 °C result in a saturation value of 0.02-0.04
mg larger, i.e. with a flux of 1 m’s” it gives
around 10’ kg of dissolved rock per year.

It is a small figure but it suggests that further
studies are necessary to a more complete
understanding of saturation conditions as a
function of temperature, of chemically complex
waters in a closed system.

In any case indirect evidences of
effectiveness of  speleogenetic  processes
induced by geothermal heating in phreatic
conduits can be found, because if these
processes are possible, they have to affect the
network morphologies:

1) the geothermal energy is released only in
the lowest conduit walls, then the dissolving
characteristics have to depend on the rock
surface orientation;

2) a deep conduit shadows completely the
upper rock, then the formation of a conduit that
cross the rock above another is hampered, and
this affects the whole drainage conduit structure.

Similar processes can probably play a part
also in the deep drainage network formation in
glaciers (Badino, 2002), but either ice or
limestone, a lot of work has still to be done for a
better understanding of geothermal role in karst.
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Conclusions

The estimations of temperature fields inside
mountains are important for speleogenesis and
for underground climate studies, but also for
many cases which require an energy balance on
a sub-geological time-scale, like glacier
stability, geothermal spring studies, deep hydro-
geological analysis, tunnel drilling and so on.

We have shown that these potentially
cumbersome modelling can be reduced to
simple calculations that allow quite accurate
estimations of energy absorbed by deep
structures and of provenance depths of
geothermal waters.

These results could also be applied for remote
sensing of deep drainage structures and for
construction of inexhaustible geothermal power
plants, but at present these applications appear
to meet insurmountable practical difficulties.
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