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Abstract  

The paper presents an analysis of the interaction between the geothermal flux and the water or air- deep drainage 
networks. The problem of geothermal power intercepted by deep structures and, in general, the temperature field 
calculations, is converted to classical thermo-engineering problems in terms of shape factors. It is shown that the fluid flow 
in a conduit perturbs the whole deep rock temperature field until the geothermal flux of a large area is focalised onto the 
conduit. It is shown that either small water masses flowing into a mountain are able to perturb the rock temperature up to 
the surface, on sizes that do not depend on water mass dimension, but on its depth, and then on enormous volumes. The 
introduction of the “geothermal cross section” of an underground drainage structure allows us to improve the classical 
formula of minimum provenance depth of geothermal water. Enlarging factors are applied to the classical estimation in 
dependence of the ratio between the actual average discharge and the critical discharge Qc, which depends on the conduit 
geothermal cross section. The geothermal “umbra cones” created in the overlying rock by deep underground structures are 
described.  

It is shown that the geothermal flux can play a significant role in the underground drainage phenomenology. 

Keywords:   geothermal flux, heat transfer in karst massifs

1. The geothermal flux and the energy 
contents of rocks 

An introduction to the geothermal energy flux 

It is widely known that the rocks below us 
have temperatures that increase with depth. The 
reason is that the internal part of Earth is hot 
and the surface cold; there are then two �heat 
sources� (but in this work I have adopted the 
suggestion of Bohren (Bohren, 1998), avoiding 
use of the word �heat�), and the thermal energy 
flows between them with the rules given by the 
usual conduction equations.  

Table 1, adapted from (Lee, 1966) gives 
typical values, widely variable, of geothermal 
flux, estimated by measures of deep 
underground temperature gradients. 

The world average (Verhoogen, 1956) is 

2mW06.0 −=gtF  

The flux is some 60 kW per square kilometre, 
which corresponds to a total release of 3×1013 
W on the whole planet. For comparison the 
energy flux received from the Sun is 1.7×1017 
W, therefore the geothermal flux is around 5000 
times smaller than the main energy source for 
Earth. It cannot play a role in the free 
atmosphere phenomenology, but we are going 
to see that in the case of underground 
atmospheres it can and it does.  

At first, this appears not to be true in the case 
of cave atmospheres, that are really quite cold 
(essentially at the yearly average external 
temperature, -from hereafter Tave ; Badino, 
2004) while the atmosphere of mines can be 
very hot (Badino and Forti, 2005). Actually the 
first aim of this work was to show that the 
geothermal flux could not play any role in the 
deep karst microclimates and genesis, because it 
is shielded by deep drainage conduits: This is 
exactly the contrary of what we are going to 
show...
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TABLE 1 
Typical values of geothermal flux 

Regions Mean geothermal flux Fgt 
[mW m-2] or [kW km-2] 

Number of measures 

Continents 
Africa 36-61 15 
America 25-150 85 
Australia 35-160 65 
Asia 22-150 60 
Europe 26-140 60 
Oceans   
Atlantic 3.4-250 250 
Indian 5.9-220 250 
Pacific 2.9-340 600 
Arctic 33-62 20 
Geothermal regions 
Larderello (I) 450  
Oora Kei Korake (NZ) 4200  
Matsukawa (J) 630  

 
Mines, caves and tunnels 

The first point to discuss is the difference 
between the temperature of artificial and natural 
cavities in order to clarify the common 
confusion between �thermal flux� and 
�temperature�. 

It is useful to compare two Underground 
Neutrino Observatories, in Mont Blanc 
(between France and Italy) and in Gran Sasso 
(in central Italy), which are assembled in halls 
in motorway tunnels. The depth of the first, 
dismissed in 2001, was some 1800 m below the 
surface, at an altitude of 1300 m asl, whilst the 
depth of the second is around 1050 m at an 
altitude of 1000 m asl. Their temperatures are 
nevertheless completely different, in the first it 
is around 32 °C, in the second at 6 °C, the two 
unsuitable for working. Therefore it is necessary 
to act in the opposite sense, in the first to cool, 
in the second to warm the experimental halls. 

The reason for the two different temperatures 
is the different rock permeability.  

The Mont Blanc rock is mainly granite, the 
waters met by the tunnel were essentially fossil 
waters, the meteoric water circulation being 
quite epidermal (up to depth of 100-200 m 
below the surface), with some exceptions 
localised along large major rock discontinuities.  

The Gran Sasso rock is essentially limestone, 
and drillings have shown a cave layer 550 m 
above the tunnel altitude, and a general water 
table extended up to that level. The infiltration 
waters at the surface are essentially at Tave, and 
cross the whole mountain in nearly adiabatic 
conditions, which means that they are only very 
slowly heated along the fall. Therefore in the Mt 
Blanc�s depth there are essentially �mine� 
waters in thermal equilibrium with hot, deep 
rocks, whilst the deep Gran Sasso waters are 
essentially meteoric waters, in equilibrium with 
the atmosphere. 

It is useful to discuss a little more the internal 
water heating in karst. The reason for water 
temperature increase during underground fall is 
the gravitational energy which is converted in 
thermal (a process that gives a water adiabatic 
lapse rate �2.34 °C km-1) and, in the case of 
flowing in vadose conditions, also to thermal 
exchanges with moist air, always characterised 
by a different adiabatic lapse rate, around -5 °C 
km-1. The actual caves� lapse rates are between 
these two extremes (Badino, 2000; Luetscher 
and Jeannin, 2004), a fact that has huge 
consequences on the caves energetic balances, 
which nevertheless are outside this work aim; 
we return briefly to it in the next chapter, but a 
discussion can be found in (Badino, 2005). We 
concentrate here on the fact that the infiltrations 
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create a thermal connection between the 
atmosphere and the deep karst.  

In short the thermal contact between deep 
waters and atmosphere in the Mont Blanc case 
is due to the recent tunnel, in the Gran Sasso to 
the natural ancient conduits that have permitted 
a deep water flow that has been able to shield 
the geothermal flux from below and to cool the 
whole mountain above the water table. 

More in general we can compare the 
temperature in the bulk of large mountains 
looking at the temperatures encountered during 
the tunnels construction. The world�s deepest 
tunnels are essentially in the Alps and it is 
possible to discuss their internal temperatures. 
The figures, adapted from (Szechy, 1973) show 
the rock profile above the tunnels and the 
corresponding local temperature. 

The first figure (Fig. 1) shows the situation of 
the St. Gotthard tunnel, in Switzerland, mainly 
in granite and gneiss. It is possible to see that 
the temperature dependence with depth is quite 
regular. 

Next figure (Fig. 2) shows the situation in the 
Simplon tunnel (between Italy and Switzerland), 
a geological structure in gneiss and, roughly in 
the Italian part, limestones. It shows low 
temperature anomalies in the sedimentary part 
around PK 15 (Luetscher and Jeannin, 2004). 

The Mt Blanc situation is quite different (Fig. 
3). Its rock is mainly protogine, but there is an 
important fault that allows very deep glacial 
water circulation, which has lowered the rock 
temperature near PK 8, where extreme 
excavation problems where encountered 
(Guichonnet, 1967). The general behaviour is 
regular, but the whole mountain has been cooled 
a little by the fault. 

The next figure (Fig. 4) shows a completely 
different situation, the Gran Sasso (Catalano, 
1993). Not only the temperature does not 
increase with depth, but also it shows a 
tendency to decrease with it, because as deep as 
it is, as colder are inflowing waters. We have 
seen above that they meet a very small warming 
crossing the mountain (Badino, 1995). 

Other more complex phenomena can occur in 
determining the rock temperature. For example 
Szechy cites the case of the Great Appennine 
tunnel (Italy), mainly in limestone and clay, 
where a local temperature of 60 °C, 500 metres  

 

Fig. 1. Depth profile and rock temperatures in the St. 
Gotthard tunnel. 

 

Fig. 2. Depth profile and rock temperatures in the 
Simplon tunnel. 

 

Fig. 3. Depth profile and rock temperatures in the 
Mont Blanc tunnel. 

 

Fig. 4. Depth profile and rock temperatures in the 
Gran Sasso tunnel. 
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below the surface, has been encountered. The 
Author says that �discrepancies are due to 
intensive methane infiltration through the 
Eocene clay shale�, which looks quite strange. 
Nevertheless it is quite common to meet high 
temperatures connected with local thermal water 
infiltrations, often connected with hyperkarstic 
phenomena (Badino and Forti, 2005). Here we 
deal only with a �standard� situation to analyse 
the geothermal impact on our usual karst. 

Convective mountains  

The graphics (Fig. 5) show in short the above 
discussed data (temperature vs. depth) where 
each type of data point indicator describes a 
different tunnel. It is possible to see two 
completely different behaviours, the �hot� 
mountains without internal water fluxes, with 
positive temperature gradient, and the �karstic� 
mountains with slowly negative or zero 
gradients.  

 

Fig. 5. Rock temperature versus depth in the large 
alpine tunnels. 

In fact these mountains are in thermal 
contact, and in equilibrium, with the local 
climate, that they follow with a delay that 
depends on the mountain depth (Badino, 2004). 

This thermal contact surface-underground 
due to water vein, is the base for the traditional 
and fundamental �remote sensing� during tunnel 
excavations. Continuous rock temperature 
measurements are performed during work 
(Guichonnet, 1967); a regular temperature 
increase with the surface distance is a signal of 
compact rock. Occasional water veins are in 
thermal equilibrium with geothermal flux, 
which is possible only if these water reservoirs 
are relatively small and without a hydro-
geological connection on long ranges, and then 

cannot be extremely dangerous. Otherwise, if 
during excavation appears a tendency to a 
temperature reduction, it is a sure signal of an 
approaching water stream in direct contact with 
the surface, that at these depths has obviously 
enormous pressure, which is able to create 
extremely dangerous situations, also because it 
is surely associated to dramatic rock 
discontinuities. This is the reason why a lot of 
work is made in the field of rock temperature 
estimations in deep tunnels (Koenigsberg, 1906; 
Goy et al., 1996; Badino, unpubl. 2005). 

Underground high temperatures are 
connected with good thermal insulations, which 
means that a tunnel, or a mine, can be excavated 
across rocks that are very hot (high temperature) 
because, i) they have almost no contact with the 
surface and ii) they have then acquired 
equilibrium with the geothermal flux. Then the 
relative rock insulation has allowed to a so 
small thermal flux to heat up to high 
temperatures enormous quantities of matter. 

As we have seen above, it is possible to 
consider mountains with caves as good thermal 
conductors and then in general (let us forget for 
a while the geothermalism) they are in thermal 
equilibrium with the external atmosphere. 

As larger are the caves, as smaller it is the 
impedance for water crossing the whole 
mountain, then deep water circulation is 
possible and the whole structure is crossed, 
which is a big difference from a mountain 
without caves where only water circulation is 
quite epidermal.  

Another consequence to be pointed out is that 
if the mountain is highly permeable to water 
fluxes the thermal energy transfers inside it are 
absolutely dominated by fluid motion, then the 
pure conductive terms into the rock (�heat� 
diffusion) become negligible.  

It is possible to add that low-impedance water 
(or air) transfers inside a mountain can be 
considered a special case of thermal convective 
movements, and then the karstic mountains are 
examples of convective thermal contact with the 
atmosphere, whilst the impermeable rocks have 
only a conductive contact with it, with a very 
poor efficiency. 

The hot mountains energy contents 

Let us estimate the energy contents of a hot 
rock prism, with a surface A and an altitude of 
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H. Its temperature at the beginning is T0=Tave, 
local average temperature. 

The geothermal flux will heat the rock until 
the temperature gradient in it becomes able to 
evacuate the geothermal power on the surface. 
This equilibrium condition (�stationarity�, i.e. 
no time dependence) is obtained when the 
gradient is 

z
TKF Rgt ∂

∂
=

 

Where we have used partial derivative 
because in general the temperature is function 
also of time. This is exactly the condition that 
allows the measure of geothermal flux from 
temperature gradient data, assuming a steady-
state condition.  

In this case we can assume a rock thermal 
conductivity KR=2.5 Wm-1 K-1, typical for 
granite, whilst the limestone conductivity is 
some 10% less. Then the temperature gradient 
at the equilibrium is 
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Which is 24 °C per kilometre. It is easy to 
calculate the energy necessary to heat at this 
constant temperature gradient a rock prism of 
surface A from depth Z up to the surface; its 
total available energy is 

Q = ACRρR∆T
0

Z∫ dz = ACRρR

Fgt

KR

Z 2

2  

Where CR is the rock specific thermal 
capacity (800 J kg-1K-1) and ρR its density 
(roughly 2600 kg m-3). For example, assuming 
Z=1 km, with typical values the total energy 
contents per kilometre square of surface is 
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For comparison, a 20 kTon atomic bomb 
yields 1014 J. 

It is important to note that this energy, that a 
power plant of 1 GW produces in two years, has 
been released to our prism rock by the small 
geothermal heater, only 60 kW. It is a small 

power, but it has worked from a very long time, 
the rock is a very efficient thermal insulator and 
the final result is an efficient energy storage. 

Rock heating time 

To estimate correctly the time needed for 
heating, it is necessary to take into account that 
the rock prism is in contact with others all 
around; the calculation would have to include 
these in the estimation, reconstructing the whole 
temperature field and its dependence on time. 
The problem is complex but we can do a crude 
estimation of the prism heating time scale 
considering it as thermally isolated from its 
surroundings (which is equivalent to assume a 
flat surface and uniform, uni-dimensional 
heating), then 
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The last term can be rewritten in terms of 
thermal diffusivity coefficient defined as 

RR

R
R C

Ka
ρ

=
 

In the case of rock  

126 sm102.1 −−×≈Ra  

And then 

R
heat a

Zt
2

2

=∆
 

Typical width of limestone mountains are 
around 1000 m, then the heating time scale is 
around 104 years, not so much for geological 
time scale, but longer than the typical global 
climate fluctuation (Badino, 2004). 

Penetration lengths of temperature fluctuations 

Let us recall the classical thermal fields 
solution of a homogeneous thermal conductor to 
a sinusoidal and to a sudden (step) temperature 
change.  

In the first case a thermal wave propagates 
inside, fading exponentially (Badino, 2004; 
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Lismonde, 2002). If tsin is the period of 
sinusoidal wave we have that the �penetration 
length� is 

sin
2 tal R
p π

=
 

If the temperature fluctuation has a step 
shape, the propagation length is more difficult 
to define. The penetration of thermal shock of 
amplitude ∆T is described in terms of rock 

temperature increase at depth x at time t, by 
equation (Isachenko, 1969) 

T x, t( )= ∆T 1- erf x
2 aR t

 

 
  

 

 
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 
 
 

 

 
 
  

Where erf(u) is the Error Function. The figure 
(Fig. 6) shows the results at different times. A 
discussion about the properties of this solution 
can be found in (Lismonde, 2002). 

 

 

 

 

 

 

 

 

 

Fig. 6. Diffusion in rock of 
one step temperature 
increase on its surface. 

The last equation suggests that a step thermal 
wave is able to reach a depth x in a time t or, 
vice versa, after a time t the thermal disturbance 
has reached the depth x, and the relation 
between the two quantities is given by the 
argument of Error Function. More precisely it is 
possible to show (for example, classically 
(Laidler and Meiser, 1995) that 

x2 ≈ 2aRt  

Then the penetration in rock up to depth Z of 
a cool wave requires a time-scale ∆tcool 

∆tcool =
Z 2

2aR  

The estimation is heavily approximated, 
because we are not looking for the complete 
cooling of the mountain, but for the equilibrium 
temperature field formation inside it, what is 
attained not when the whole rock is at the same 

temperature of the surface, but when its 
temperature has attained the �stationary 
temperature field� geothermal gradient seen in 
the previous chapter. Nevertheless it makes no 
sense to try to perform exact calculations, which 
in any case work with unrealistic forms of 
mountain.  

We can conclude that the heating and the 
cooling time-scale up to the equilibrium 
configuration are almost the same, and they do 
not depend on the temperature drop, then at 
depth Z in metres we have 

∆teq =
Z 2

2aR

≈ ∆tcool ≈ ∆theat  [1.1] 

In the case of compact rock we can assume 
that the equilibration time scale in years is given 
by 

∆teq = 0.01 Z 2  [y] 
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This estimation is very important for our 
discussion. In the next chapters we are going to 
consider water and geothermal fluxes that have 
attained stationary conditions. It is then obvious 
that if the water flow has begun from a time that 
is much smaller than that of equilibration time, 
it is not possible to assume that the system has 
attained a general equilibrium configuration, 
what in fact happens in the artificial 
excavations. This is the reason why the mines 
are hot. 

2. The basic approach to the problem 

The problem of infiltration temperature 

The classical Desio�s formula (Celico, 1986) 
that gives the minimum depth attained by 
geothermal water is based on the assumption 
that underground there exists a first layer 
(heterotermic) in thermal contact with the 
atmosphere with essentially the temperature of 
local inflowing fluids, which have a temperature 
T0 quite precisely (but in general, a little lower, 
(Badino, 2004)) equal to the local yearly 
temperature Tave. Below this first layer the rock 
temperature increases in conductive regime 
(homotermic region).  

The heterotermic layer is also called �active 
layer� (US Bureau of Mines, 1996), mainly 
because the seasonal variations can create icing. 

It is necessary to note, nevertheless, that 
some problems do exist in the definition of 
homotermic layer (Schoeller, 1962; Celico, 
1986), because it is considered the layer where 
temperature does not depend on atmospheric 
temperature variations, not the layer where 
temperature is equal to the local average of the 
atmosphere. It is then defined on the basis of its 
temperature stability, not on the basis of its 
thermal contact, if with atmosphere or with deep 
rocks. Really in rock with deep aquifers we 
meet a heterotermic layer with seasonal 
fluctuations (some score of metres), a layer 
above the aquifer (included) at T0 (Luetscher, 
2004; Badino, 2005), a thin layer of thermal 
contact deep rocks-aquifer, where a relatively 
sudden temperature increase, probably 
dependent of aquifer permeability, is possible 
(Goy, 1996; Badino, unpubl. 2005). We would 
call it the �geothermal exchange layer�. Below 
this region, a regular temperature increase in 
deep rocks is found. The scenario is then more 

complex, but it is better to postpone a detailed 
discussion to a future work. 

We can spend some words about the exact 
value of T0 and its relation with Tave. Really Tave 
depends on the altitude, and on average 
decreases of 6-6.5°C per kilometre, as described 
with the International Standard Atmosphere. 
Also at a first approach it looks better to think 
that the rock assumes not the average yearly 
temperature of the atmosphere Tave, but the 
average temperature of waters at the infiltration 
point, that is quite lower because the rain waters 
in alpine karst are generally associated with 
colder periods (but in tropics with warmer 
periods); really, many other corrections are 
necessary to estimate the local rock 
temperatures (Badino, 2004). 

Another corrective term, already cited above, 
appears during the underground flow because 
the temperature increase of underground waters 
along their travel is different from outside, 
where the waters follow the ISA mean lapse rate 
(6 °C per kilometre of fall). Underground, in 
adiabatic conditions the theoretical value of 
water temperature increase is 2.34°C per 
kilometre of fall, but the experimental values 
into the caves, where energy exchanges with the 
air are possible, are around -3 and -4°C km-1. 
Really, we can assume that the water 
temperature that has infiltrated at altitude H 
[km], when it arrives at level 0 is some (3-4)×H 
[°C] hotter, then sensibly colder than the 
corresponding infiltrating waters at that altitude.  

In detailed calculations these effects, that 
create a difference between the actual cave 
temperature T0 and the local yearly temperature 
at its same altitude Tave, have to be taken into 
account, but in our discussion they are 
completely negligible. 

The energy release to groundwater 

There is an obvious approach to consider the 
role of geothermal flux.  

In the upper Earth surface layers the 
geothermal energy is essentially intercepted by 
water that releases it to the atmosphere when it 
goes out from springs.  

The energy that comes onto a large surface A 
is obviously FgtA, and it is very regular in time. 
Let us suppose that it is absorbed by a mass M: 
Its temperature increase rate is then given by the 
condition 
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dTMCAdtF wgt =  
Where Cw is the water thermal capacity, that 

is 

MC
AF

dt
dT

w

gt=
 

Then if we know the shielding mass M we 
can calculate its temperature variation with 
time, but how large is M? Reasonably it is the 
mass of groundwater, but it changes seasonally, 
depends on rock characteristics and so on. Still 
worse, the previous equation says that the 
temperature continues to increase because the 
mass is stable and the energy flux continues. 
The equation gives us a temperature-changing 
rate, not a temperature variation.  

It is easy to avoid these problems. Really the 
mass M can change, but its water is almost 
continuously flowing, which means that some 
water enters cold in the mass M, and on average 
the same quantity flows away from some other 
side, warmer. We will impose a condition of 
steady state and calculate the temperature 
variation of the flowing water, independently on 
M and, above all, on time. 

The geothermal energy flux is very regular 
but the groundwater flow in general it is not. 
We then may expect that the temperature 
change fluctuates, also if we consider the over-
simplified system of a single water mass M and 
we neglect other problems like the drainage 
network structure and mixtures between 
different branches that depend on the water flow 
rate. 

So, the temperature changes fluctuate, but we 
are going to estimate the average value of 
temperature increase due to geothermal flux. 

The groundwater temperature increase  

It is easy to estimate the flowing water 
temperature increase, assuming the powerful 
and reasonable hypothesis that on average the 
system is stationary. This means that the 
thermal energy inflowing in M from Earth is, on 
average, going out as water flux enthalpy 
increase. In this way we have not to consider the 
mass M, that we cannot know, but only the 
outgoing flux from it, because our steady state 
assumption states also that the temperature of M 
does not change with time (on average...). 

Let us estimate the water flux out-flowing 
from a region of surface A, which thermally 
interact underground. If the precipitation is P (in 
kg m-2s-1), the infiltration is P minus the part Pout 
�lost� outside due to evaporation. This part 
depends on climate, surface type and so on; in 
temperate regions ranges between 30 and 40% 
of total, but in deserts can rise to 90% (Celico, 
1986). With this assumption the enthalpy 
extracted from the system is (P-Pout)∆TgtA, 
where ∆Tgt is the water temperature increase 
during deep flow (Fig. 7). The condition of 
stationarity implies that on average the 
temperature cannot change in time and then 

Fgt A = P − Pout( ) Cw∆Tgt A  

That solves our problem. We can change 
units, calling P* the infiltration in [mm a-1], to 
obtain 

 

 [2.1] 

 

 

Fig. 7. Interception of geothermal energy flux by a 
flat aquifer. In stationary approximation the water is 
heated and the upper rocks are completely shielded. 

The upper parts of drainage systems (for 
instance the caves, highly permeable) are almost 
exactly at the external average local 
temperature, therefore the water is in general 
warmed of ∆Tgt between the lowest cave parts 
and the springs, that is along the flow in the 
phreatic systems. 
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In alpine karsts P* is some 1000 mm a-1 and 
then the water average temperature increase due 
to geothermal energy is some 0.5°C.  

It is a small term, very difficult to measure, 
and really it has never been measured. But it is 
not always so small, a temperature increase of 
5°C between the caves and the springs has been 
measured in Cuatro Ciénegas, a figure that 
corresponds to an infiltration (P*-Pout)=100 mm 
a-1 in this desert region of Coahuila, Mexico 
(AA. VV., 2004).  

Therefore it would theoretically be possible 
to estimate the average infiltrating flow 
measuring this temperature increase, but it is a 
measure quite difficult to do with some 
accuracy, because it is the difference of two 
uncertain parameters, and other processes surely 
occur along the water rock crossing. 

The plane watertable 

We have used these calculations in a previous 
work (Badino, 1995) to explain why the karstic 
mountains are so cold, therefore excluding a 
significant role of geothermal flux in 
underground climate definition, because the 
energy flow from Earth depths is easily 
shielded. This very natural approach to refuse, 
in general, any role to the geothermal flux, it 
was not original, it is a quite traditional point of 
view.  

Bögli (Bogli, 1980) estimates reasonably 0.2 
°C �to prevent the karstified zone above from 
being geo-thermally heated up�, that is a very 
interesting idea that we shall meet again. In a 
very interesting and complete paper Mathey 
(Mathey, 1974) estimates a maximum of 0.55 
°C. More recently Jeannin et al. (1997) estimate 
the specific discharge of a karstic spring (the 
equivalent of infiltration) between 30 and 3000 
mm a-1. The first figure seems too low (almost 
three times dryer than the North Mexico 
deserts), but in this paper it is used an energy 
flux too low by a factor thousand, to finish to 
say that the temperature increase, that has 
physical dimension [°C], is �less than 0.1 °C/a�, 
where really the 30 mm a-1 case would be 
warmed by some 15 °C. 

Let us return to this estimation. We have 
obtained the average water temperature increase 
and we could now begin to calculate the 
fluctuations dependence on discharge and so on. 
But we are dealing with conduits, not with plane 
watertables. Are these calculations and 

assumptions true for similar �discrete� systems? 
The general answer is that no, they are not 
generally correct.  

The water flows along definite branches, that 
do not cover a large surface and with a general 
shape that is far from regular. The complete 
shielding assumption is not reasonable for 
karstic drainage. 

3. The underground temperature field 
with a drainage network 

The problem 

The scenario described above (a regular, flat, 
diffuse water table) can sometimes be correct 
but in general it gives completely wrong results 
in the internal rock temperature field 
estimations. 

To study a more real model it is necessary to 
estimate the energy interception made by a 
system (a thermodynamical sink) that is buried 
in a semi-infinite medium where a thermal 
energy flux is flowing from infinite.  

Let us consider the problem details. 
We have a semi-infinite rock volume in 

which a thermal flux Fgt is coming from below. 
It creates a temperature gradient given by: 

∂ T
∂ z

=
Fgt

Kr  

Where we have assumed the depth z as 
positive downwards. The temperature field at 
depth H below the surface (or, better, below the 
heterotermic layer) it is therefore given by 

T H( )= T0 +
∂ T
∂z

 
 
 

 
 
 H = T0 +

Fgt

Kr

 

 
 

 

 
 H

 

We have previously seen that T0 is essentially 
the local Tave. It is very natural to suppose that 
the geothermal energy intercepted by a deep 
structure is that given in previous chapters, that 
is (geothermal flux)×(structure area), therefore 

 [3.1] 

This means that the energy intercepted by a 
�cave� is proportional to its surface in the 
direction of energy flux. It is a very natural 
assumption, but it is false.  

gtFAW =
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The fact that, up to now, has not been 
considered is this: If we bury a system able to 
intercept and to evacuate elsewhere the energy, 
the whole temperature field in the rock is 
altered and then the flux itself changes. 

The geothermal field with a cave 

The problem of temperature field calculation 
in this configuration has to be solved with these 
boundary conditions: 

1) The geothermal flux from infinite is 
constant, Fgt; 

2) The temperature on the surface is T0 
constant everywhere; 

3) The cave temperature is T0, the same as on 
the surface (we have sufficiently discussed the 
limits of this assumption);  

4) At the infinite the temperature field is not 
disturbed by the cave existence. 

These conditions imply a flat external 
topography and assume that the infiltrated water 
heating from surface to the cave is negligible. 

We said that if the cave has an area A, it is 
natural to assume that the absorbed geothermal 
energy is Fgt×A [Eq 3.1]. Is this correct? Let us 
firstly discuss it qualitatively, drawing the 
isothermal surfaces in the rock. The figure (Fig. 
8) shows a reasonable situation that respects the 
boundary conditions. It is possible to see two 
things: 

1) The isothermal surfaces have a tendency to 
converge, then to be focussed, onto the cave; 

2) They are �compressed� around the cave.  
If we remember that the thermal flux flows 

along the maximum T variation (i.e. along the 
grad (T), which means perpendicularly to the 
isothermal surfaces) and that its value is 
proportional to the gradient of T, we have that 
the two features are equivalent to say that: i) the 
cave focus on itself the geothermal flux and, ii) 
in the rock surrounding the cave the geothermal 
flux (and the geothermal gradient) is much more 
intense than the natural one... 

So, the assumption that gave us the [Eq. 3.1] 
is surely wrong.  

But is it possible to calculate the correct 
value? Quite surprisingly it seems that nobody 
has studied this important problem. 

Before we look for the solution, we have to 
make some note about the enormous weight of 

the stationarity assumption. Whatever initial 
temperature field condition will converge to 
asymptotic values which are solution of Laplace 
equation, but this convergence requires time. 
During this time, which is of the order of 
equilibration time scale introduced above [Eq. 
1.1], the difference between the real field (in 
transient phase) and the asympotic one 
(stationary phase) can be important. If the 
equilibration time is comparable with the typical 
changes of boundary conditions (global climatic 
changes, infiltration of hot waters or so on), the 
system can never be considered in a true 
stationary phase, and the equation given by this 
assumption has to be considered heavily 
approximated. This limit of stationary 
assumption gives strong uncertainty in the 
temperature fields estimations for the new deep 
alpine tunnels, which have very long 
equilibration times (Badino, unpubl. 2005), and 
affects also our next considerations. 

 

Fig. 8. Qualitative view of the stationary thermal 
field due to the interaction between the geothermal 
flux and a conduit with strong drainage (system S). 
The isothermal surfaces are affected in a wide 
region, and the cave temperature is T0. 

The general solution 

Therefore the problem of calculation of 
stationary temperature fields is very difficult to 
solve just with the easy boundary conditions 
given in the previous chapter. What to expect, 
then, when we will have to assume finite energy 
transfer rate inside the cave or situations in 
which the temperature of the cave itself is 
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determined by the geothermal flux? And what 
monstrous form may assume the solution in a 
non-stationary case, if we want to consider, for 
instance, the cooling of a mountain during the 
karst creation inside it?  

Nevertheless there is a simple way to lead 
this problem to typical situations of engineering 
thermal exchange.  

Let us show how, considering three different 
systems, S, S� and S�: 

1) The main system just now described, the 
real case, which we call from hereafter S (Fig. 
8); 

2) The system composed only of semi-infinite 
undisturbed rock, without caves and with 
external temperature equal to 0, which we call 
from hereafter S� (Fig. 9); 

3) The more complex system S�, (Fig. 10), 
composed by a cave at a particular temperature 
T� buried in a semi-infinite rock, that releases 
energy to the surface at temperature T0. Also the 
rock at the infinite is assumed to have 
temperature T0. In this last ideal system S� there 
is no geothermal flux at all. 

We are then ready to do the final step, 
assuming that T� in S� has a value given by: 

 

 [3.2] 
 

where H is the cave depth from the surface. We 
then assume that the cave in S� has exactly the 
temperature of the rock at depth H in the system 
S� plus T0. 

Let us consider now the three temperature 
fields. They are the solution of general Fourier 
equation (Isachenko, 1969) 

( )
t
T

a
zyxT

∂
∂

=∇⋅∇
1,,

 

That in our case, not time dependent, it 
reduces to the Laplace equation 

02 =∇ T  

It means that the T fields behave like a huge 
class of phenomena for which the sum of the 
three spatial second derivatives is zero. The 
functions that satisfy these conditions are called 
�Harmonic Functions�, and are among the most 
important and studied functions in Physics 
(Carslaw and Jaeger, 1959; Bejan, 1993; 
Balcerzak and Raynor, 1961; Nashchokin, 
1979). By the way, it would be possible to solve 
our fields using solutions given for different and 
well-studied problems like, for instance, the 
electric field due to particular charge 
distributions, but we can do better for our 
purpose. 

 

 

Fig. 9. Qualitative view of the stationary thermal 
field due to the interaction between the geothermal 
flux and a conduit with no drainage (system S�). The 
isothermal surfaces are unaffected, and the cave 
temperature is higher than T0.  

 

Fig. 10. Qualitative view of the stationary thermal 
field between a �hot conduit� at temperature T� and 
the surface at T0 (system S�). The isothermal 
surfaces are finite, closed and contain the conduit. 
Heat diffusion problems like this one are quite usual 
in thermal exchanges engineering. 

H
K
F

TT
r

gt+= 0"
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The field structure around S, that we have 
qualitatively shown (Fig. 8), is our unknown 
term. 

The field structure of the second S� it is 
obvious, it is composed by many horizontal 
parallel lines (or planes, in 3-d) for T-field and 
vertical vectors for thermal fluxes. 

The third system is the most exciting. There 
are almost no lines all around (neither for T nor 
for thermal fluxes) unless in the region between 
the cave and the surface, because the 
temperature difference between the �hot cave� 
and the surface and also the �infinite�, drives an 
energy flux. From the other side, this situation is 
a very usual situation for engineering, because 
the �hot cave� can be a tube transporting hot 
fluid buried in some engine... 

Now we can do the last step: We state that the 
unknown T field of the system S is given by 

( ) ( ) ( )zyxTzyxTzyxT ,,",,',, −=  [3.3] 

That is, we can subtract the (very complex, 
but very common) T� field from the trivial T� to 
obtain our solution T. 

It is possible to prove this theorem in three 
steps:  

1) The Laplace equation is linear, then if T1 
and T2 are solutions, also (T1-T2) is a solution: 
here in particular T� and T� are solutions, then 
also T is; 

2) The boundary conditions written above are 
satisfied by a T field given by (Eq 3.3);  

3) Then T is a solution of our equation with 
these particular boundary conditions, but the 
solution is unique for the Uniqueness Theorem 
for Harmonic Functions then, T is the solution... 

The base of this proof is the linearity of the 
grad operator, which allows the first property. 
But also the temporal derivative is linear, and 
then we have another independent fundamental 
result: The T field may be calculated by this 
way also for transient conditions, if we use the 
equivalent transient solutions for the T�. We are 
not ready to use here this corollary, probably 
very important. The geothermal energy focusing 
on caves 

It is interesting to look for other 
consequences. Let us return to our [Eq. 3.3] to 
apply the grad operator (that in equation will be 
noted with ∇) and multiplying for the rock 
conductivity KR 

KR∇T = KR∇T '−KR∇T" 

These terms are now the energy fluxes that 
flow through the systems S, S� and S�, and then 

( ) ( ) ( )zyxFzyxFzyxF ,,",,',,
rrr

−=  

But the energy flux in the system S� is simply 
-Fgtk where k is the unit vector in the z-
direction, and then 

( ) ( )zyxFkFzyxF gt ,,",,
rrr

−−=  

This means that we are able to calculate the 
energy fluxes in the system S with vectorial 
subtractions between the S� system, complex 
but already studied, and the trivial S�. If we 
multiply this equation by the surface element dS 
and integrate on a wide surface A that contains 
all the surroundings of the cave we have 

AFAFFA gt "−−=  

The term F×A describes the flux outgoing 
from the surface in presence of the cave, Fgt×A 
the total flux if it would not be the cave, than 
the energy flux captured by the cave is the 
difference between the two 

              [3.4] 

 
In this way the problem of energy 

interception of a cold cave buried in an energy 
flux is reduced to the energy transfer between a 
hot cave and the surface. 

Now it is possible to study the T� solutions, 
going to the heat transfer engineering to use its 
results. 

The shape factor 

The thermal transfer engineering uses a very 
effective approach to the problem of complex-
shape systems.  

Let us return back to the fundamental 
equation of conductivity, now written in three 
dimensions. The thermal flux through a surface 
element dA is given by 

dW = KR ∇T dA  

Where KR is the body (rock) conductivity. 
We may consider two sources at definite 
temperature T1 and T2. The thermal energy is 
drained between the two by an intermediate 

AFAFAFAF

FAAFAFW

gtgt

gtcaptcapt

"" =+−=

=−==
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temperature field configuration, which depends 
on the system shape in an extremely complex 
manner.  

Let us call Aiso the isothermal surfaces that 
we can draw between the two sources; these 
surfaces can be infinite, also if neither of the 
two bodies is infinite.  

The grad (T) must be perpendicular to these 
surfaces because the thermal flux vector cannot 
have any component along an isothermal 
surface, and then the thermal energy flows 
normally to these surfaces.  

Let us call n the coordinate along the thermal 
flow path. The previous equation gives the 
thermal flux as 

dW = −KR  
∂T
∂n

dA
 

The total flux between the two sources is then 
given by the integral of thermal flux on any of 
these surfaces. It is not important to choose one 
or the other, because we have assumed that the 
only two �heat producer or destroyer� are these 
two sources, and the energy must be conserved. 
The thermal transfer through one of these 
surfaces is therefore 

W = −KR  
∂T
∂n

dA
Aiso

∫
 

We define now a new dimensionless 
temperature T* (that is in fact a relative 
temperature variation in the path between the 
two sources) as 

12

1*
TT
TTT

−
−

=
 

Where T1 and T2 are the sources 
temperatures. Then it is possible to write 

W = −KR  T2 −T1( ) ∂T *
∂n

dA
Aiso

∫
 

In this way the sources temperatures are 
analytically separated from the system 
geometry, which now is completely included in 
the last integral, which is nevertheless extremely 
complex also for trivial configuration.  

This equation has to be compared with the 
usual equation which describes the thermal 
energy transfer between two sources separated 
by a uniform distance ∆z through an area A 

W = −KR  A
T2 −T1

∆z
 
 
 

 
 
 
 

We see that the integral behaves like the ratio 
between A and the sources distance, and then 
the system geometry is included in this term 

A
∆z

 
 
 

 
 
 =

∂T *
∂n

dA
Aiso

∫
 

The term in brackets is the ratio between the 
surface crossed by the thermal energy and the 
distance between the two sources. It is a 
�length� that characterises each system shape 
that exchanges energy among two sources. 

This scale-length is called �shape factor� in 
literature (Carslaw, 1959; Hahne, 1975; 
Holman, 1996; Ozisik and Necati, 1993; Kays, 
1966). We adopt unwillingly the usual notation, 
that uses the �S� for a length, but we shall write 
SF, hoping to reduce (perhaps�) confusion with 
the subscript �F�. Then 

[3.5] 

 
The geothermal power absorbed by the cave 

can be then written as 

[3.6] 

Now we have to study the way to use this 
result. 

The “shape factor” calculation 

We do not have to study in details the way to 
calculate the shape factors. Still in simple 
configuration the isothermal surface calculation 
is very complex and the integration is in general 
extremely difficult, but the heat-exchanges 
literature contains many shape factors worked 
out for the most common geometrical 
configurations. Most of these results have been 
obtained based on advanced analytical methods 
(conformal mapping, superposition, special 
transforms, analogies with the electrical 
potential studies and so on); it is not useful for 
us here to study these approaches. 

Table 2 shows these shape factors in 
interesting situation (Holman, 1996) 

We are going to use these shape factors, but 
first it is necessary to answer an important 
question: Are the shape factors linear? Let us 
discuss the question with an example. 

SF =
∂T *
∂n

dA
Aiso

∫

TSKW FR ∆=  
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TABLE 2 
Semi-infinite medium with 
isothermal surface and isothermal 
spherical cavity of radius R at depth 
H 

HR
RSF 2/1

4
−

=
π

 
  

H 
R 

T2 

T1 

Semi-infinite medium with 
isothermal surface and isothermal 
disc of radius R parallel to the 
surface at depth H 

( )HRR
RSF 2/tan2/

4
1−−

=
π

π

 
  

H 
R 

T2 
T1 

Semi-infinite medium with 
isothermal surface and isothermal 
cylindrical cavity of length L of 
radius R, parallel to the surface at 
depth H 

( )RH
LSF /cosh

2
1−=
π

  
 H T2 

T1 

R   
L 

Semi-infinite medium with 
isothermal surface and isothermal 
cylindrical hole of radius R drilled to 
a depth H normal to the surface. 

( )RH
HSF /2ln

2π
=  

 H T2 
T1 

R 
 

Semi-infinite medium with 
isothermal surface and isothermal 
plate (width W, long L, H>>W) 
parallel to the surface at depth H 

( )WL
WSF /4ln

2π
=  

 H T2 
T1 

L W 
 

 
If we know the shape factors of two 

independent systems S1 and S2, say, one 
composed by two cylinders and the other of a 
sphere and a cylinder, can we consider a third 
system S3 (in this case, two cylinders and a 
sphere) as composed by some �sum� of the two 
firsts, and consider that its shape factor is given 
by some �sum� of the two? 

Unfortunately the answer is: No, we cannot. 
The temperature fields are linear and then the S3 
temperature field can really be calculated from 
the S1 and S2, but it changes completely the 
equipotential surfaces on which the integration 
is performed to �average� the flux in the 
integral [Eq. 3.5]. It is therefore necessary to 
recalculate these surfaces and to repeat the 
integration that will give a result that has no 
direct connection with the integrations of S1 and 
S2 fields. 

This means that, for instance, the knowledge 
of the shape factor of a conduit buried in a semi-
infinite medium tells us almost nothing about 
the shape factor of two parallel conduits in the 
same medium, unless their distance would be so 

large that each temperature field is not affected 
by the other. Only in this latter case the shape 
factor of the two conduits is the sum of the 
shape factor of two single conduits, but in 
general it is not so. 

4. The interception of geothermal flux by 
caves 

The geothermal cross sections of caves 

It is now possible to apply the previous 
results to the problem of interaction between 
caves and geothermal flux. It is stated above 
that, to satisfy the boundary conditions, the T� 
temperature has to be 

H
K
F

TT
r

gt+= 0"
 

As a consequence, the equation that gives the 
power intercepted 

TSKW Fr ∆=   
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Fig. 11. A deep draining conduit can create a very 
large geothermal shadow on the surface. Its scale 
size is not the conduit size, but the conduit depth. 

 
It is reduced to the very simple result 

W = KR  SF

Fgt

Kr

H = FgtSF H
 [4.1] 

That is 

( ) ( ) ( )depthcavefactorshapecavefluxgeothermal
fluxdIntercepte

××=
=

 

Table 3 shows that the scale-size of shape 
factor is some 1-10 times larger that the scale-
size of the underground structure. The last 
equation has to be compared with [Eq. 3.1]. 

Therefore, the effective area (we call it 
�thermal cross section�) for thermal flux 
absorption of an underground conduit (Fig. 11) 
is not its geometrical area but instead SFH, 
roughly 10 times the cave size multiplied by its 
depth, then it is always enormously greater than 
the cave�s actual area! This amplification is due 
to the �converging lens� effect created by the 
presence of cold fluids in the cave that affects 
the whole structure of the rock temperature 
field. 

For example, let us estimate the geothermal 
power intercepted by a conduit at a depth 
H=500 m with radius r=0.5 m and long L=300 
m. We may use the shape factor given by 

m250
6.7

1900

cosh

2
1

==








=
−

r
H

LSF
π

 

With Fgt=2×106 J m2a-1 we have 
 

W = FgtSF H = 2 ×106 250 × 500( )= 2.5 ×1011 J a−1

 

Which is really a big power. It is possible to 
study how much this figure changes with 
conduit radius. Table 3 shows the energy 
collected, by conduits of different sizes.  

The result in the third column at first appears 
surprising, because it shows that the variation of 
the conduit size does not affect so much the 
intercepted power, but it is reasonable because 
the power is not absorbed by the conduit 
surface, but by the focusing effect of conduit on 
the temperature field. 

The fourth column shows the surprisingly 
high average thermal flux (note that are Watt 
per square metre!) that enters through the 
conduit transverse surface. For comparison, the 
Sun deposits on average 1.4 kWm-2 on the Earth 
surface: The geothermal energy deposition on 
small conduits is then of the same order! This 
appears to be absolutely unbelievable, but is it 
true?  

Roughly, the answer is that: Yes, it is true. 
But there are other important details to be taken 
into account. 

The heating of water in deep conduits 

Let us discuss the effective water heating in 
the focusing conduit, calling T its temperature at 
the springs. 

In the previous discussion, it was made the 
fundamental assumption that the water 
temperature T0 in the conduit does not change 
and really it is its low temperature that changes 
the whole temperature field of surrounding rock. 
This is equivalent to assume that the water flux 
(or air flux in case of dry caves) is so large that 
the enthalpy intercepted by the conduit flows 
away in the form of a small temperature 
increase of a very large amount of fluid, and 
does not really affect the conduit temperature. 
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TABLE 3 
Conduit radius r 

[m] 
Shape factor SF 

[m] 
Intercepted power 

[J a-1] 
Average Flux on 
conduit [W m-2] 

0.01 165 1.7×1011 900 
0.1 210 2.1×1011 110 
0.5 250 2.5×1011 25 
2 310 3.1×1011 8 
5 360 3.6×1011 3.8 

 

 We have then that the maximum energy 
extraction efficiency is obtained if the exit 
temperature T is almost equal to T0. 

We have the opposite limit, if the warming is 
so large that the water temperature T becomes 
T�, the temperature of undisturbed rock. In this 
case the conduit becomes completely 
�transparent� to the geothermal flux, the 
temperature field assumes a regular geothermal 
gradient not affected by the cave presence and, 
as a consequence, just a little energy is 
intercepted. The water into the conduit is then a 
hot �mine water� and the classical, �wrong� 
solution [Eq. 3.1] becomes correct.  

The real cases are intermediate between these 
two extremes, because in first approximation the 
water really warms but, as a consequence, its 
capability to intercept geothermal energy is 
reduced, because the temperature difference 
between the rock and the water becomes 
smaller. Really the scenario is still more 
complex, because the water temperature 
increases along its path underground: It enters 
cool, very efficient in geothermal energy 
focussing, but as long as it warms downstream 
its capability to intercept the geothermal flux 
decrease. The non-linearity of SF forbids correct 
analytical solutions, but we can make some 
other step. 

The critical shielding discharge 

It is possible to estimate the water heating 
along a deep conduit and its final temperature as 
a function of conduit parameters. 

We have just seen that two extreme scenarios 
are possible. If the fluid flux is very large the 
rock temperature field is completely changed, 
the geothermal energy flow interception is 
maximum and the water flows out at T0. At the 
other extreme, if the water flow is very small, 
the rock temperature field is completely 
undisturbed, the geothermal energy flow to the 

water is minimum and the water flows out quite 
hot, at T�.  

Let us define the �critical fluid flux� Qc that 
divides these two scenarios in a usually 
idealised way. We look for a water flux Qc that 
enters at temperature T0 and flows out at T� in 
stationary conditions. The enthalpy subtracted 
to the system is  

dE = Cw Qc dt T"−T0( ) 

If we admit that the system parameters do not 
depend on time, this enthalpy deficit must be 
given by the incoming geothermal flux Wdt. 
Then using [Eq. 4.1] we have 

FgtSF H dt = Cw Qc dt T"−T0( ) 

But T� is given by 

H
K
F

TT
R

gt+= 0"
 

And we obtain  

     [4.2] 

 
Then the critical flux is simply the conduit 

shape factor �scaled� by a dimensional term 
(rock conductivity divided by the thermal 
capacity of flowing fluid). In terms of volume 
flux 

dV
dt

=
Qc

ρw

=
KRSF

Cwρw

m3s−1[ ]
 

From another point of view, Qc can be 
considered the critical flux below which it is 
possible to consider that the rock temperature 
field is undisturbed. Or, from still another point 
of view, we can be sure that a water flux much 
larger than Qc perturbs the rock. 

Qc =
dM
dt

=
KRSF

Cw

kgs−1[ ]
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The solution [Eq. 4.2], which is surprisingly 
simple in comparison with the bloody analytical 
difficulties of the problem, is able to give also 
the velocity that water must have to satisfy the 
equation. If the conduit radius is r, then 

ww
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w
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r

Qv
ρπρπ 22

11
==

 

In the case of a water draining conduit in 
limestone we have  

Qc,water =
2.3

4.2 ×103 SF = 5.5 ×10−4 SF kgs−1[ ]
  [4.3] 

If the conduit drains air, the critical flux 
becomes  

 
Qc,air =

2.3
103 SF = 2.3×10−4 SF kgs−1[ ]

 

The shape factor is in general comparable 
with the conduit length, usually some 103-104 
m, therefore the water flux able to create 
changes in the rock temperature fields is in 
general quite small. Neither the air flux 
requested to cool the rock it is too large, in 
absolute, but its small thermal capacity and its 
very small density cause a large volume flow 
request.  

It is nevertheless necessary to remember that 
temperature field changes are only possible if 
the fluid fluxes have had sufficient time (more 
than ∆teq defined in [Eq. 1.1]) to converge at the 
stationary (equilibrium) state. 

The critical flux Qc for air or water are 
extremely important for another reason: They 
are the air or water fluxes able to shadow the 
upper rock from the geothermal flux, forcing its 
temperature near to the average yearly 
temperature of external atmosphere, Tave.  

Finally, it is important to note that this work 
was originally a chapter of an underground 
climate physics book. Its purpose was to 
estimate when we could consider a cave as 
�shielded� from the upward geothermal energy 
flux. If the flux is much larger than Qc we are 
sure that the mountain parts (and caves) above 
the conduit are shielded; if the flux is well 
below the critical value the conduit is 
�transparent� to the geothermal energy and we 
have to include also its contribution to analyse 
the underground climate in the rock above the 
conduit.  

We are going to improve this point of view 
and discover that Qc has another, still more 
important, meaning. 

Geothermal power intercepted 

We can calculate the effective cave 
temperature T at the equilibrium and solve the 
inverse problem, the estimation of flowing 
depth of hot spring waters.  

The final system temperature must lie 
between T0 (near it for high water discharges) 
and T� (near it for low discharges). Let us call 
WM the maximum power that it can be 
subtracted by our system 

WM = FgtSF H = 0.06 SF H W[ ] [4.4] 

Which is valuable for very large water flows 
and outflowing temperature around T0.  

If we call T the real (unknown) conduit 
temperature at the equilibrium, the residual 
outgoing upward flux is not zero, because it 
�filters� an energy given by 

( )0TTSKW FRup −=  

The difference between WM and Wup is the 
net flux entering inside the cave from below. If 
the conduit is at temperature T, the energy 
conservation states 

( )0TTSKHSFWWW FRFgtupMin −−=−=  

But from [Eq. 3.2] we have 

0" TT
HF

K gt
R −

=
 

Then 

Win = FgtSF H 1−
T −T0

T"−T0

 

 
 

 

 
 = WM

T"−T
T"−T0

 

 
 

 

 
 
 [4.5] 

If T=T0 the equation reduces to Win=WM 
(which describes the �system S� situation), and 
if T=T� the term Win vanishes, as expected.  

Therefore, the geothermal flux intercepted by 
the cave is reduced as long as its final 
temperature T increases: The cave is becoming 
�transparent�, and this equation describes its 
�fading� inside the temperature field. 
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Temperature and deposited power versus 
discharge 

Usually we have very small possibilities to 
establish a natural conduit discharge. We deal 
with actual discharge Q, and we can only try to 
understand how this water (or air) flow is 
affected by the geothermal flux. 

Let us then return to the application of the 
First Principle [Eq. 4.5]; if we call Q the total 
actual water flux in the system, it gives 

WM
T"−T
T"−T0

 

 
 

 

 
 = Cw Q T −T0( ) [4.6] 

Where we have assumed that the whole 
entering energy flux goes to warm the water 
flux. This statement is true if we admit that the 
thermal energy is released on the whole system, 
i.e. it is true if the temperature T, which is 
actually the output water temperature, can be 
used to describe the whole system, also in its 
further parts. It is a strong, and in general false, 
hypothesis, but it is better to assume it as true 
and only afterwards have a look on what 
happens in more real situations. 

With the previous results and trivial 
calculations, we have 
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 [4.7] 

 
This important equation relates the actual flux 

Q to the output temperature T in terms of the 
critical shielding flux Qc and the surrounding 
temperatures. It is very easy to solve it to obtain 

 

 [4.8] 

 
 

Where we have called 
 
 [4.9] 
 

The excess temperature above the �external 
average� T0 is then T-T0, but its natural scale is 

the ratio between this difference and the 
theoretical, maximum difference T�-T0. Then 

T −T0 =
T"+qT0

1+ q
−T0 = T"−T0( ) 1

1+ q
 

 
 

 

 
 

 

And calling the �excess temperature ratio� of 
groundwater, that is the amount of actual 
heating in comparison with the maximum 
attainable, we have 

      [4.10] 

 
With the assumption [Eq. 4.9] we can rewrite 

the [Eq. 4.5] 
 
         [4.11] 

 

We have then two fundamental equations, [Eq. 
4.10] and [Eq. 4.11], which connect the internal 
drainage Q to the outgoing temperature and to 
the intercepted geothermal flux. The two 
graphics (Fig. 12) describe the behaviour of the 
out-flowing water temperature T and of water 
absorbed energy as a function of discharge, 
obviously measured in function of our nice 
scale-discharge Qc (it can be adapted to air flow 
with trivial changes). 

We have previously discussed the Qc as the 
�shielding flux� and WM as the �maximal 
intercepted flux�. Now we see that they are 
mainly the natural scales of fluid flow and of 
geothermal power flux intercepted, exactly as 
happens with the Similarity Numbers, always a 
ratio between a parameter and a scale-value for 
it.  

 

Fig. 12. Water temperature increase and intercepted 
power by a deep conduit versus water discharge. 
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Really, the apparition of a natural scale-value 
of the main variables, the fluid flow and the 
geothermal power, may suggest to use this 
typical thermo- or fluid-physicists approach, 
calling the Q/Qc and W/WM terms as Someone 
Number, to create two underground companions 
to Nusselt, Reynolds, Peclet, Froude and so on 
Numbers.  

Nevertheless we do not like this way to 
describe physical processes, preferring 
(aesthetically, because mathematically it is 
absolutely equivalent�) to work with the scale 
dimensions. Therefore we do not propose this 
Similarity approach although, if a name must be 
given to the geothermal �heat� term W/WM, we 
strongly suggest �Alighieri Number�... 

The inverse problem 

It is obviously of main interest the problem of 
deducing the provenance depth of a hot spring. 
The traditional Desio formula (Celico, 1986) 
assumes essentially that a water flux at 
temperature Tw comes from a depth H0 at which 
the temperature of undisturbed rock is Tw, that 
is 

 [4.12] 

 
This is true for �mine waters�, deposits of 

resident waters, which have essentially the T� 
temperature, but we have seen that this 
assumption is in general false, because a natural 
water flux had surely succeeded to disturb the 
whole rock temperature field. We have then to 
use [Eq. 4.8] and [Eq. 4.2] to write 
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That correlates the temperature increment 
above the local temperature to the unknown 
depth H, to the discharge Q and the conduit 
shape factor SF. Then 

H =
KR

Fgt

Tw −T0( ) 1+
Q

5.5 ×10−4 SF

 

 
 

 

 
 
 

 Comparing with [Eq. 4.12] we obtain the 
solution for thermally disturbed rock (Q average 
yearly discharge) 









×

+= −
FS

QHH 40 105.5
1

 
This solution shows that the evaluations made 

with the Desio formula [Eq. 4.12] are deeply 
underestimated, unless for very small 
discharges. In fact we can write 

H = H0 1+ q( )  [4.13] 
It is then possible to see that the q-number is 

essentially the �amplification� term of estimated 
depth H0. 

The main difficulty in these formulas it is the 
estimation of critical discharge Qc, which 
requires the knowledge of the conduit shape 
factor, in generally unknown. In case studies it 
is necessary to take into account the geological 
context to estimate the probable conduit shape 
in order to calculate the critical discharge Qc. 

Let us do an example. In many case, for 
instance, we can assume a �U� shape for the 
whole drainage system. A similar conduit can 
simply be approximated with a conduit of length 
L at depth H, because its two vertical branches 
do not matter for the shape factor, being merged 
in a rock shielded by the deep drainage. Then 

   
                            [4.14] 

 
The Table 4 gives the value of inverse 

hyperbolic cosine term for typical conduit 
radius and depths. 

 
TABLE 4 
H↓ R→ 0.1 m 1 m 10 m 100 m 
200 8.3 6.0 3.7 1.3 
500 9.2 6.9 4.6 2.3 
2000 10.6 8.3 6.0 3.7 

 
It is possible to see that, unless the nearby 

�pathological� cases of the last column, the 
denominator in [Eq. 4.14] is not far from 2π; 
therefore for this conduit it is possible to assume 
a shape factor roughly equal to its length 

LSF ≈  

The formula that estimates the water 
provenance depth can then be approximated as 

  [4.15] 
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In general a typical deep circuit has a very 
large size, many kilometres. If we call L* its 
length expressed in kilometres we have, for the 
circuit described above 

*5.0 LQc ≈  

And finally 

 [4.16] 

 
It is a simple formula that estimates the 

drainage depth as a function of discharge. 
As an example, let us consider a spring with 

an average discharge Q=20 kg s-1, and a 
temperature 20°C above the local average. The  
depth estimation [4.12]  gives H0=830 m.  

If the hydro-geological context suggests a 
circuit length L*=20 km, the critical discharge 
is Qc=11 kg s-1, and then the q term is almost 
equal to 2. Our formula estimates then a depth 
H of 2.5 km for the circuit, much more than 
supposed�  

With this value we can return to the 
geological context and, if we have other 
information (like the circulation time), to more 
accurate estimations of the ratio between the 
depth and the radius of a deep drainage system. 
A better estimation of provenance depth with 
[Eq. 4.13] and [Eq. 4.14] is then possible. 

It is nevertheless better to remember that we 
are working with the assumption that the system 
has attained stationary condition; the above 
formula is then correct for water fluxes that 
persist from very long times, much longer than 
∆teq of [Eq. 1.1]. 

Temperature changes into the system 

It is possible to perform a last �calibration�.  
We have already noted that we are assuming 

that it is possible to define univocally a system 
temperature T, but this is not always true. It is 
possible to speak univocally of �system 
temperature� if each part of the system is 
uniformly heated by the energy flux, for 
instance if the head and the tail of water flux are 
mixed (for instance, when the water enters in a 
spherical deposit). Nevertheless this is not the 
usual situation because in a real conduit the 
water enters with a temperature T0 and flows 
warming up to the final temperature T. 

It is possible to perform a last step, 
considering a long conduit L, along which the 
water is heated. The term T is now the 
temperature at the length x, in a section dx with 
shape factor sF. The thermal flow and the 
temperature increase in that section is then 
given by [Eq. 4.5] 
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This is an equation that could solve the 
problem, if we would able to integrate the left 
part, but unfortunately this is not possible.  

We have written sF and not dSF (as would be 
natural) because it is not possible to pass from 
the equation that gives SF as a function of L, to 
the contribution of a part dx of L to SF. At the 
end of the third chapter, we have noted that SF 
does not linearly depend on each dx part, 
because it comes from an average on the whole 
space and system, and it is not possible to 
consider it as the result of an integration on 
some dx.  

For instance, the contribution of the dx at one 
conduit edge covers a cone above it, and the 
local sF is like that given by a small sphere, 
whereas the dx in the middle of conduit gives a 
very small contribution. 

We can nevertheless integrate the last 
equation assuming the false approximations 
sF=dSF. It makes no analytical sense but it 
probably introduces an error smaller than the 
assumption of uniform system temperature. 
Then for a conduit buried in a semi-infinite 
medium at depth H 
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Using Qc becomes 

1
q

Fgt H
Kr

T"−T
T"−T0
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And integrating on x from 0 to L and on T 
from T0 to T we have 
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T"−T = T"−T0( )exp −
Qc

Q
 

 
 

 

 
 

 

Adding and subtracting T0 from the equation 
left side, we have 

T −T0 = T"−T0( )− T"−T0( )exp −
1
q

 

 
 

 

 
 
     [4.17] 

This has to be compared with [Eq. 4.10]. It is 
a simple and nice equation that describes the 
water heating during a flow.  

The Qc term has returned, and continues to be 
the scale discharge of deep conduits. If the 
effective discharge Q is large (in comparison 
with Qc) the water temperature at the outflow is 
near the T0, and if q is near 0 the T=T�.  

The shape factor has disappeared, because 
this equation is valuable everywhere the (strong 
and false) sF=dSF approximation is valuable. 

Nevertheless we can suppose that it is 
reasonable model, and we guess that the last 
equation gives a fair approximation of natural 
heating processes along a conduit.  

It is useful to invert again the problem to 
obtain the estimated depth crossed by water of a 
spring at temperature Tw. We have 
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And with simple passages 

 

 

[4.18] 

 
 

That corresponds to [Eq. 4.13], and reduces 
to it for q~0 and q>>1. With the same 
assumption of [Eq. 4.16] on shape factor, and 
L* in [km], it gives 

  

[4.19] 

 
That can be considered a reasonable formula 

to estimate the water provenance depth, for 

water flows that have attained a steady state 
situation with rock. 

Returning to the previous example, of a 
spring with Q=20 kgs-1, and a temperature 20 °C 
above the local average, H0=830 m, Qc=11 kg s-

1, and q=2.  
The corrective term to be applied to H0 with 

[Eq. 4.16] it is a factor 3, but now [Eq. 4.19] 
gives a factor 2.54.  

Really the temperature variability along the 
conduit gives [Eq. 4.19] a final heating at a 
depth smaller than in the case of a �global� 
heating [Eq. 4.13], but the difference does not 
appear as too significant if compared with the 
intrinsic uncertainties of such problems. 

Steady State Geothermal Power Plant 

In the previous chapters, it has been shown 
implicitly a way to extract power from 
underground, using a deep conduit that focuses 
on itself large amounts of geothermal energy. 
This is deeply different from the usual 
Geothermal Power Plants, which extracts 
energy (or, better, are believed to extract, 
because cool water always focus on itself the 
temperature field) from hot rock, directly 
cooling it. In principle, when the rock is cooled 
the power plant stops its work.  

Here we have shown that the deep cooling 
effect acts as an energy attractor on the cooled 
rock, and then that a power plant working in 
such way, it will never end its fuel.  

We want here to make the next step, looking 
for its �constructive� efficiency.  

Consider a fluid that transfers energy QH 
from a �hot� source at TH to a colder source at 
TL. Does this process produce work? If the 
energy transfer is made with �special� systems 
it does: They are called �thermal engines� and 
use the energy flow from TH to TL to produce 
work. A power plant is said to �produce� 
energy, but this is trivially false because the 
energy cannot be neither produced nor 
destroyed: It stores energy at a very low entropy 
(�work�) in an entropy flow from a high 
temperature (low entropy) to a low (high 
entropy).  

The Second Principle of Thermodynamics 
states that the efficiency -that is the ratio 
between the work rate given L and the heat rate 
absorbed W- of a reversible thermal engine 
working between the two sources is 
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But we have that 
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And then  

STL LMax ∆=  

That is, the maximum work available is given 
by the product of the temperature of cold source 
and entropy change during cooling, which is the 
Free Energy variation in the transformation.  

In the case of interaction cave-geothermal 
field, the cave acts as a thermal sink, in two 
phases. In the first step it intercepts a flux of 
geothermal energy W (low entropy, temperature 
T�) from downward, which results in a water 
temperature increase from T0 to T. In the second 
step the energy it is released as �disordered 
energy� to the atmosphere (high entropy, T0) at 
the spring. For instance, considering the deep 
conduit as a geothermal power plant, we have 
that its entropy production per time unit ∆t -we 
are dealing with discharge Q- is  

∆S = −
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+
W
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With some work and using [Eq. 6.1] 
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This shows that the entropy production goes 
to zero for q=0 and q=∞, because if the water 
flow is very small the fluid final temperature is 
quite high but the total energy removed is very 
small; from the other side, if a lot of water flows 
into the conduit, its final temperature is 
essentially T0, then the entropy is able to flow 
between the rock and the water, but it is not 
finally transferred to the atmosphere and to an 
external �final user�. 

It is easy to calculate the value qM for which 
the entropy flow attains its maximum  

qM = γ +1 =
T"−T0

T0

+1 =
T"
T0  

That we can substitute in the previous 
equation to obtain the maximum of entropy 
flow. In natural cases the term T0 is some 280 
K, the T� some 350K, then the ratio is slightly 
more than 1, and then 

qM = 1+
T"−T0
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1
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Which gives, erasing the second-order terms, 
the maximum power production of this 
geothermal power plant 
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It is necessary to emphasize the difference 
between the subtracted power WM and the 
maximum available work (or power) LMax. The 
first is interesting to make some use that 
requires enthalpy at constant temperature, as it 
is the case of ice melting or water evaporation, 
for which WM, not LMax, is used. But to create 
structures we need �work� also in the physical 
sense: Order, available work.  

Therefore, the LMax terms in each water 
heating and rock cooling processes are directly 
connected with the entropy rate at disposal for 
constructive processes, that is, they may appear 
as the building rate of ordered structures, like 
conduit networks.  

Geothermics and phreatic conduit genesis 

We have observed above that the initial 
purpose of this work was to show that the 
geothermal energy flux could not participate in 
the characterisation of cave climate and then, 
for instance, to speleogenesis (Badino, 2005).  

As the reader has seen, we are showing 
exactly the contrary. 

Here we are going to make the last step 
giving some ideas about the geothermal role in 
the genesis of phreatic conduits and in general 
of underwater drainage networks. 
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During deep flow the underground waters are 
warmed from their starting temperature T0 up to 
the final T, that has a theoretical maximum at 
T�, as shown above.  

What is the typical temperature increase? We 
have seen that a conduit is able to shield the 
geothermal flux like a plane watertable does, 
then the scale temperature increase is around the 
value given by [Eq. 2.1] 

∆Tgt =
0.06

4.2 ×103 P − Pout( )
=

500
P *

°C[ ]
 

Therefore, in real cases it is in the range 
between 0.2 and 3 °C, a temperature drop that 
water gains during flow between the cave 
bottom and the springs. Now we know that this 
temperature change happens also along 
conduits, not only in the �watertable�, and that 
the power release is concentrated on the conduit 
surface walls. How does this warming affect the 
water chemistry? 

We can outline the chemical behaviour of 
water saturated of calcium carbonate entering in 
flooded conduits. 

It is well known that the carbonate 
dissolution in water is very complex (Snoeyink, 
1980), (Ford and Williams, 1989), (Dreybrodt, 
2000) because the equilibrium state results from 
the combined equilibriums of different, 
interconnected reactions, which depends on 
temperature, local pH and the presence of other 
dissolved salts with common ions. 

In the simplest case, the first equilibrium 
reaction gives the amount of dissolved carbon 
dioxide, for which in usual conditions the Henry 
Law holds, stating that the dissolved gas 
decreases with temperature and it is 
proportional to its partial pressure above the 
water surface. Therefore, its quantity depends 
also on the kinetics of gas transport until the 
surface, if it does exist.  

The other reactions, which involve only water 
and carbon dioxide, are the dissociation of 
carbonic acid in calcium bicarbonate and H+, the 
dissociation of bicarbonate and the equilibrium 
H+ and OH- in water. These dissociations tend 
to increase with temperature thanks to the 
increase of available energy. 

The last main reaction describes the 
equilibrium between the calcium carbonate and 
water enriched with carbon dioxide. The 

carbonate dissolution releases ions that are in 
part the same already present in water.  

This complex system forces to find the 
solution of many different equations describing 
equilibrium kinetics, charge and mass 
conservation. General solution charts are given 
in (Ford and Williams, 1989); they show the 
saturation values at the equilibrium for various 
initial partial carbon dioxide pressures. It results 
that in open systems (with release of carbon 
dioxide excesses) the warming of a calcite 
saturated water gives, without exceptions, a 
super-saturation and then provokes a calcite, or 
aragonite, deposition. 

In a closed system this behaviour changes in 
a complex way. Generally a super-saturation is 
produced, but if the initial CO2 partial pressure 
is below 200 Pa (0.002 atm) and the temperature 
is below 30 °C, a calcite under-saturation 
appears as result of water heating, as larger as 
colder is the water. 

The typical carbon dioxide partial pressure in 
free atmosphere is 3.5×10-4 atm, then at 10 °C 
the calcite equivalent content at the saturation is 
around 12 mg l-1. A water temperature increase 
of 1 °C result in a saturation value of 0.02-0.04 
mg larger, i.e. with a flux of 1 m3s-1 it gives 
around 103 kg of dissolved rock per year.  

It is a small figure but it suggests that further 
studies are necessary to a more complete 
understanding of saturation conditions as a 
function of temperature, of chemically complex 
waters in a closed system. 

In any case indirect evidences of 
effectiveness of speleogenetic processes 
induced by geothermal heating in phreatic 
conduits can be found, because if these 
processes are possible, they have to affect the 
network morphologies: 

1) the geothermal energy is released only in 
the lowest conduit walls, then the dissolving 
characteristics have to depend on the rock 
surface orientation; 

2) a deep conduit shadows completely the 
upper rock, then the formation of a conduit that 
cross the rock above another is hampered, and 
this affects the whole drainage conduit structure. 

Similar processes can probably play a part 
also in the deep drainage network formation in 
glaciers (Badino, 2002), but either ice or 
limestone, a lot of work has still to be done for a 
better understanding of geothermal role in karst. 
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Conclusions 

The estimations of temperature fields inside 
mountains are important for speleogenesis and 
for underground climate studies, but also for 
many cases which require an energy balance on 
a sub-geological time-scale, like glacier 
stability, geothermal spring studies, deep hydro-
geological analysis, tunnel drilling and so on.  

We have shown that these potentially 
cumbersome modelling can be reduced to 
simple calculations that allow quite accurate 
estimations of energy absorbed by deep 
structures and of provenance depths of 
geothermal waters. 

These results could also be applied for remote 
sensing of deep drainage structures and for 
construction of inexhaustible geothermal power 
plants, but at present these applications appear 
to meet insurmountable practical difficulties. 

References 

AA. VV., 2004. Under the Desert: the 
Mysterious Water of Cuatro Ciénegas. La 
Venta.  

Badino G. 1995. Fisica del Clima Sotterraneo. 
Memorie IIS  7, II.  

Badino G. 2000. I Gradienti di Temperatura nei 
Monti, un Indicatore Esplorativo. Talp-FST 
21, 72-80  

Badino G. 2002. The Glacial Karst.  Proc. of V 
Int. Symp. on Glacier Caves and Cryokarst 
2000, Nimbus 23, VII, 1/2002. 

Badino G. 2004. Cave Temperatures and Global 
Climatic Change. Int. J. Speleol. 33.  

Badino G. and Forti, P. 2005. L�eccezionale 
Ambiente della Cueva de los Cristales. Proc. 
�Le Grotte di Miniera�, Memorie IIS XVII, 
II.  

Badino G. 2005. Clouds in Caves. 
Speleogenesis and Evolution of Karst 
Aquifers 2 (2), www.speleogenesis.info.  

Badino G. 2005. Nuovo Collegamento 
Ferroviario Torino-Lione, Temperature del 
Tunnel di Bussoleno, Geodata, Torino, 
unpubl.  

Balcerzak M. and Raynor S. 1961. Steady State 
Temperature Distribution and Heat Flow in 
Prismatic Bars�, Int. J. Heat Mass Transfer 
3: 113-125,  

Bejan A. 1993. Heat Transfer. John Wiley and 
Sons.  

Benderitter Y., Roy B. and Tabbagh A. 1993 
Flow Characterization through Heat 
Transfer: Evidence in a Carbonate Fractured 
Medium. Wat. Res. Res. 29, 11: 3741-3747.  

Bohren C. and Albrecht B. 1998. Atmospheric 
Thermodynamics. Oxford Un. Press, 402 pp. 

Bogli A. 1980. Karst Hydrology and Physical 
Speleology. Springer-Verlag.  

Carslaw H. and Jaeger J. 1959. Conduction of 
Heat in Solids, Oxford-Clarendon Press.  

Catalano P. 1993. Laboratori Sotterranei: 
Relazione Geologica. Unpublished, INFN.  

Celico P. 1986. Prospezioni Idrogeologiche. 
Liguori.  

Dreybrodt W. 2000. Equilibrium Chemistry of 
Karst Water in Limestone Terranes. In 
Speleogenesis: Evolution of karst aquifers, 
Klimchouk, A., Ford, D.C., Palmer, A.N., 
and Dreybrodt, W. (Eds.), Nat. Speleol. Soc., 
USA: 130-135.  

Ford D. and Williams P. 1989. Karst 
Geomorphology and Hydrology, Unwin 
Hyman.  

Goy L., Fabre D. and Menard G. 1996. 
Modelling of Rock Temperatures for Deep 
Alpine Tunnel Projects. Rock Mech. Rock 
Engng 29.  

Guichonnet P. 1967. Il Traforo del Monte 
Bianco, Mondadori.  

Hahne E. and Grigull U. 1975. Formfaktor und 
Formwiderstand der Stationaren 
Mehrdimensionalen Warmeleitung, Int. J. 
Heat Mass Transfer 18: 751-767  

Holman J. 1996. Heat Transfer, MacGraw-Hill.  
Isachenko V., Osipova V. and Sukomel A. 

1969. Heat Transfer, MIR.  
Jeannin P., Liedl R. and Sauter M. 1997. Some 

Concepts about Heat Transfer in Karstic 
Systems. 195-198.  

Kays W. 1966. Convective Heat and Mass 
Transfer.  McGraw-Hill.  

Lee et al. 1966. Heat Flow and Volcanic 
Temperatures. Handbook of Physical 
Constants, The Geological Society of 
America.  

Koenigsberger J. and Thoma E. 1906. Uber die 
Beeinflussung der geothermischen 



Giovanni Badino / Speleogenesis and Evolution of Karst Aquifers, 2005, 3 (2),  p.25 
  

 

Tiefenstufe durch Berge und Taler. Eclog. 
Geol. Helv. IX (1).  

Laidler K. and Meiser J. 1995 Physical 
Chemistry. Houghton-Mifflin Co.  

Lismonde B. 2002. Aérologie des Systèmes 
Karstiques. CDS Isére.  

Luetscher M. and Jeannin P.-Y. 2004. 
Temperature distribution in karst systems: 
the role of air and water fluxes. 
Speleogenesis and Evolution of Karst 
Aquifers 2 (2), (from Terra Nova 16):, 344�
350 

Nashchokin V. 1979. Engineering 
Thermodynamics and Heat Transfer. Mir, 
573 pp. 

Ozisik M. and Necati. 1993. Heat 
Conduction,.Wiley InterScience.  

Schoeller H. 1962. Les eaux souterraines. 
Masson.  

Snoeyink V.and Jenkins D. 1980. Water 
Chemistry. John Wiley & Sons.  

Szechy K. 1973. The Art of Tunnelling, 
Akademiai Kiado, Budapest. 

U.S. Bureau of Mines. 1996. Dictionary of 
Mining, Mineral, and Related Terms, CD-
ROM.  

Verhoogen J. 1956. Temperatures within the 
Earth. In Physics and Chemistry of the 
Earth, Pergamon Press, I.  

 
 

 
 
 


